⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 clagsy.c

📁 SuperLU is a general purpose library for the direct solution of large, sparse, nonsymmetric systems
💻 C
字号:
/*  -- translated by f2c (version 19940927).   You must link the resulting object file with the libraries:	-lf2c -lm   (in that order)*/#include "f2c.h"/* Table of constant values */static complex c_b1 = {0.f,0.f};static complex c_b2 = {1.f,0.f};static integer c__3 = 3;static integer c__1 = 1;/* Subroutine */ int clagsy_(integer *n, integer *k, real *d, complex *a, 	integer *lda, integer *iseed, complex *work, integer *info){    /* System generated locals */    integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5, i__6, i__7, i__8, 	    i__9;    doublereal d__1;    complex q__1, q__2, q__3, q__4;    /* Builtin functions */    double c_abs(complex *);    void c_div(complex *, complex *, complex *);    /* Local variables */    static integer i, j;    extern /* Subroutine */ int cgerc_(integer *, integer *, complex *, 	    complex *, integer *, complex *, integer *, complex *, integer *);    static complex alpha;    extern /* Subroutine */ int cscal_(integer *, complex *, complex *, 	    integer *);    extern /* Complex */ VOID cdotc_(complex *, integer *, complex *, integer 	    *, complex *, integer *);    extern /* Subroutine */ int cgemv_(char *, integer *, integer *, complex *	    , complex *, integer *, complex *, integer *, complex *, complex *	    , integer *), caxpy_(integer *, complex *, complex *, 	    integer *, complex *, integer *), csymv_(char *, integer *, 	    complex *, complex *, integer *, complex *, integer *, complex *, 	    complex *, integer *);    extern real scnrm2_(integer *, complex *, integer *);    static integer ii, jj;    static complex wa, wb;    extern /* Subroutine */ int clacgv_(integer *, complex *, integer *);    static real wn;    extern /* Subroutine */ int xerbla_(char *, integer *), clarnv_(	    integer *, integer *, integer *, complex *);    static complex tau;/*  -- LAPACK auxiliary test routine (version 2.0) --          Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,          Courant Institute, Argonne National Lab, and Rice University          September 30, 1994       Purpose       =======       CLAGSY generates a complex symmetric matrix A, by pre- and post-       multiplying a real diagonal matrix D with a random unitary matrix:       A = U*D*U**T. The semi-bandwidth may then be reduced to k by       additional unitary transformations.       Arguments       =========       N       (input) INTEGER               The order of the matrix A.  N >= 0.       K       (input) INTEGER               The number of nonzero subdiagonals within the band of A.               0 <= K <= N-1.       D       (input) REAL array, dimension (N)               The diagonal elements of the diagonal matrix D.       A       (output) COMPLEX array, dimension (LDA,N)               The generated n by n symmetric matrix A (the full matrix is               stored).       LDA     (input) INTEGER               The leading dimension of the array A.  LDA >= N.       ISEED   (input/output) INTEGER array, dimension (4)               On entry, the seed of the random number generator; the array               elements must be between 0 and 4095, and ISEED(4) must be               odd.               On exit, the seed is updated.       WORK    (workspace) COMPLEX array, dimension (2*N)       INFO    (output) INTEGER               = 0: successful exit               < 0: if INFO = -i, the i-th argument had an illegal value       =====================================================================          Test the input arguments          Parameter adjustments */    --d;    a_dim1 = *lda;    a_offset = a_dim1 + 1;    a -= a_offset;    --iseed;    --work;    /* Function Body */    *info = 0;    if (*n < 0) {	*info = -1;    } else if (*k < 0 || *k > *n - 1) {	*info = -2;    } else if (*lda < max(1,*n)) {	*info = -5;    }    if (*info < 0) {	i__1 = -(*info);	xerbla_("CLAGSY", &i__1);	return 0;    }/*     initialize lower triangle of A to diagonal matrix */    i__1 = *n;    for (j = 1; j <= i__1; ++j) {	i__2 = *n;	for (i = j + 1; i <= i__2; ++i) {	    i__3 = i + j * a_dim1;	    a[i__3].r = 0.f, a[i__3].i = 0.f;/* L10: */	}/* L20: */    }    i__1 = *n;    for (i = 1; i <= i__1; ++i) {	i__2 = i + i * a_dim1;	i__3 = i;	a[i__2].r = d[i__3], a[i__2].i = 0.f;/* L30: */    }/*     Generate lower triangle of symmetric matrix */    for (i = *n - 1; i >= 1; --i) {/*        generate random reflection */	i__1 = *n - i + 1;	clarnv_(&c__3, &iseed[1], &i__1, &work[1]);	i__1 = *n - i + 1;	wn = scnrm2_(&i__1, &work[1], &c__1);	d__1 = wn / c_abs(&work[1]);	q__1.r = d__1 * work[1].r, q__1.i = d__1 * work[1].i;	wa.r = q__1.r, wa.i = q__1.i;	if (wn == 0.f) {	    tau.r = 0.f, tau.i = 0.f;	} else {	    q__1.r = work[1].r + wa.r, q__1.i = work[1].i + wa.i;	    wb.r = q__1.r, wb.i = q__1.i;	    i__1 = *n - i;	    c_div(&q__1, &c_b2, &wb);	    cscal_(&i__1, &q__1, &work[2], &c__1);	    work[1].r = 1.f, work[1].i = 0.f;	    c_div(&q__1, &wb, &wa);	    d__1 = q__1.r;	    tau.r = d__1, tau.i = 0.f;	}/*        apply random reflection to A(i:n,i:n) from the left             and the right             compute  y := tau * A * conjg(u) */	i__1 = *n - i + 1;	clacgv_(&i__1, &work[1], &c__1);	i__1 = *n - i + 1;	csymv_("Lower", &i__1, &tau, &a[i + i * a_dim1], lda, &work[1], &c__1,		 &c_b1, &work[*n + 1], &c__1);	i__1 = *n - i + 1;	clacgv_(&i__1, &work[1], &c__1);/*        compute  v := y - 1/2 * tau * ( u, y ) * u */	q__3.r = -.5f, q__3.i = 0.f;	q__2.r = q__3.r * tau.r - q__3.i * tau.i, q__2.i = q__3.r * tau.i + 		q__3.i * tau.r;	i__1 = *n - i + 1;	cdotc_(&q__4, &i__1, &work[1], &c__1, &work[*n + 1], &c__1);	q__1.r = q__2.r * q__4.r - q__2.i * q__4.i, q__1.i = q__2.r * q__4.i 		+ q__2.i * q__4.r;	alpha.r = q__1.r, alpha.i = q__1.i;	i__1 = *n - i + 1;	caxpy_(&i__1, &alpha, &work[1], &c__1, &work[*n + 1], &c__1);/*        apply the transformation as a rank-2 update to A(i:n,i:n)             CALL CSYR2( 'Lower', N-I+1, -ONE, WORK, 1, WORK( N+1 ), 1,             $               A( I, I ), LDA ) */	i__1 = *n;	for (jj = i; jj <= i__1; ++jj) {	    i__2 = *n;	    for (ii = jj; ii <= i__2; ++ii) {		i__3 = ii + jj * a_dim1;		i__4 = ii + jj * a_dim1;		i__5 = ii - i + 1;		i__6 = *n + jj - i + 1;		q__3.r = work[i__5].r * work[i__6].r - work[i__5].i * work[			i__6].i, q__3.i = work[i__5].r * work[i__6].i + work[			i__5].i * work[i__6].r;		q__2.r = a[i__4].r - q__3.r, q__2.i = a[i__4].i - q__3.i;		i__7 = *n + ii - i + 1;		i__8 = jj - i + 1;		q__4.r = work[i__7].r * work[i__8].r - work[i__7].i * work[			i__8].i, q__4.i = work[i__7].r * work[i__8].i + work[			i__7].i * work[i__8].r;		q__1.r = q__2.r - q__4.r, q__1.i = q__2.i - q__4.i;		a[i__3].r = q__1.r, a[i__3].i = q__1.i;/* L40: */	    }/* L50: */	}/* L60: */    }/*     Reduce number of subdiagonals to K */    i__1 = *n - 1 - *k;    for (i = 1; i <= i__1; ++i) {/*        generate reflection to annihilate A(k+i+1:n,i) */	i__2 = *n - *k - i + 1;	wn = scnrm2_(&i__2, &a[*k + i + i * a_dim1], &c__1);	d__1 = wn / c_abs(&a[*k + i + i * a_dim1]);	i__2 = *k + i + i * a_dim1;	q__1.r = d__1 * a[i__2].r, q__1.i = d__1 * a[i__2].i;	wa.r = q__1.r, wa.i = q__1.i;	if (wn == 0.f) {	    tau.r = 0.f, tau.i = 0.f;	} else {	    i__2 = *k + i + i * a_dim1;	    q__1.r = a[i__2].r + wa.r, q__1.i = a[i__2].i + wa.i;	    wb.r = q__1.r, wb.i = q__1.i;	    i__2 = *n - *k - i;	    c_div(&q__1, &c_b2, &wb);	    cscal_(&i__2, &q__1, &a[*k + i + 1 + i * a_dim1], &c__1);	    i__2 = *k + i + i * a_dim1;	    a[i__2].r = 1.f, a[i__2].i = 0.f;	    c_div(&q__1, &wb, &wa);	    d__1 = q__1.r;	    tau.r = d__1, tau.i = 0.f;	}/*        apply reflection to A(k+i:n,i+1:k+i-1) from the left */	i__2 = *n - *k - i + 1;	i__3 = *k - 1;	cgemv_("Conjugate transpose", &i__2, &i__3, &c_b2, &a[*k + i + (i + 1)		 * a_dim1], lda, &a[*k + i + i * a_dim1], &c__1, &c_b1, &work[		1], &c__1);	i__2 = *n - *k - i + 1;	i__3 = *k - 1;	q__1.r = -(doublereal)tau.r, q__1.i = -(doublereal)tau.i;	cgerc_(&i__2, &i__3, &q__1, &a[*k + i + i * a_dim1], &c__1, &work[1], 		&c__1, &a[*k + i + (i + 1) * a_dim1], lda);/*        apply reflection to A(k+i:n,k+i:n) from the left and the right             compute  y := tau * A * conjg(u) */	i__2 = *n - *k - i + 1;	clacgv_(&i__2, &a[*k + i + i * a_dim1], &c__1);	i__2 = *n - *k - i + 1;	csymv_("Lower", &i__2, &tau, &a[*k + i + (*k + i) * a_dim1], lda, &a[*		k + i + i * a_dim1], &c__1, &c_b1, &work[1], &c__1);	i__2 = *n - *k - i + 1;	clacgv_(&i__2, &a[*k + i + i * a_dim1], &c__1);/*        compute  v := y - 1/2 * tau * ( u, y ) * u */	q__3.r = -.5f, q__3.i = 0.f;	q__2.r = q__3.r * tau.r - q__3.i * tau.i, q__2.i = q__3.r * tau.i + 		q__3.i * tau.r;	i__2 = *n - *k - i + 1;	cdotc_(&q__4, &i__2, &a[*k + i + i * a_dim1], &c__1, &work[1], &c__1);	q__1.r = q__2.r * q__4.r - q__2.i * q__4.i, q__1.i = q__2.r * q__4.i 		+ q__2.i * q__4.r;	alpha.r = q__1.r, alpha.i = q__1.i;	i__2 = *n - *k - i + 1;	caxpy_(&i__2, &alpha, &a[*k + i + i * a_dim1], &c__1, &work[1], &c__1)		;/*        apply symmetric rank-2 update to A(k+i:n,k+i:n)             CALL CSYR2( 'Lower', N-K-I+1, -ONE, A( K+I, I ), 1, WORK, 1,             $               A( K+I, K+I ), LDA ) */	i__2 = *n;	for (jj = *k + i; jj <= i__2; ++jj) {	    i__3 = *n;	    for (ii = jj; ii <= i__3; ++ii) {		i__4 = ii + jj * a_dim1;		i__5 = ii + jj * a_dim1;		i__6 = ii + i * a_dim1;		i__7 = jj - *k - i + 1;		q__3.r = a[i__6].r * work[i__7].r - a[i__6].i * work[i__7].i, 			q__3.i = a[i__6].r * work[i__7].i + a[i__6].i * work[			i__7].r;		q__2.r = a[i__5].r - q__3.r, q__2.i = a[i__5].i - q__3.i;		i__8 = ii - *k - i + 1;		i__9 = jj + i * a_dim1;		q__4.r = work[i__8].r * a[i__9].r - work[i__8].i * a[i__9].i, 			q__4.i = work[i__8].r * a[i__9].i + work[i__8].i * a[			i__9].r;		q__1.r = q__2.r - q__4.r, q__1.i = q__2.i - q__4.i;		a[i__4].r = q__1.r, a[i__4].i = q__1.i;/* L70: */	    }/* L80: */	}	i__2 = *k + i + i * a_dim1;	q__1.r = -(doublereal)wa.r, q__1.i = -(doublereal)wa.i;	a[i__2].r = q__1.r, a[i__2].i = q__1.i;	i__2 = *n;	for (j = *k + i + 1; j <= i__2; ++j) {	    i__3 = j + i * a_dim1;	    a[i__3].r = 0.f, a[i__3].i = 0.f;/* L90: */	}/* L100: */    }/*     Store full symmetric matrix */    i__1 = *n;    for (j = 1; j <= i__1; ++j) {	i__2 = *n;	for (i = j + 1; i <= i__2; ++i) {	    i__3 = j + i * a_dim1;	    i__4 = i + j * a_dim1;	    a[i__3].r = a[i__4].r, a[i__3].i = a[i__4].i;/* L110: */	}/* L120: */    }    return 0;/*     End of CLAGSY */} /* clagsy_ */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -