⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 clagge.c

📁 SuperLU is a general purpose library for the direct solution of large, sparse, nonsymmetric systems
💻 C
字号:
/*  -- translated by f2c (version 19940927).   You must link the resulting object file with the libraries:	-lf2c -lm   (in that order)*/#include "f2c.h"/* Table of constant values */static complex c_b1 = {0.f,0.f};static complex c_b2 = {1.f,0.f};static integer c__3 = 3;static integer c__1 = 1;/* Subroutine */ int clagge_(integer *m, integer *n, integer *kl, integer *ku,	 real *d, complex *a, integer *lda, integer *iseed, complex *work, 	integer *info){    /* System generated locals */    integer a_dim1, a_offset, i__1, i__2, i__3;    doublereal d__1;    complex q__1;    /* Builtin functions */    double c_abs(complex *);    void c_div(complex *, complex *, complex *);    /* Local variables */    static integer i, j;    extern /* Subroutine */ int cgerc_(integer *, integer *, complex *, 	    complex *, integer *, complex *, integer *, complex *, integer *),	     cscal_(integer *, complex *, complex *, integer *), cgemv_(char *	    , integer *, integer *, complex *, complex *, integer *, complex *	    , integer *, complex *, complex *, integer *);    extern real scnrm2_(integer *, complex *, integer *);    static complex wa, wb;    extern /* Subroutine */ int clacgv_(integer *, complex *, integer *);    static real wn;    extern /* Subroutine */ int xerbla_(char *, integer *), clarnv_(	    integer *, integer *, integer *, complex *);    static complex tau;/*  -- LAPACK auxiliary test routine (version 2.0) --          Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,          Courant Institute, Argonne National Lab, and Rice University          September 30, 1994       Purpose       =======       CLAGGE generates a complex general m by n matrix A, by pre- and post-       multiplying a real diagonal matrix D with random unitary matrices:       A = U*D*V. The lower and upper bandwidths may then be reduced to       kl and ku by additional unitary transformations.       Arguments       =========       M       (input) INTEGER               The number of rows of the matrix A.  M >= 0.       N       (input) INTEGER               The number of columns of the matrix A.  N >= 0.       KL      (input) INTEGER               The number of nonzero subdiagonals within the band of A.               0 <= KL <= M-1.       KU      (input) INTEGER               The number of nonzero superdiagonals within the band of A.               0 <= KU <= N-1.       D       (input) REAL array, dimension (min(M,N))               The diagonal elements of the diagonal matrix D.       A       (output) COMPLEX array, dimension (LDA,N)               The generated m by n matrix A.       LDA     (input) INTEGER               The leading dimension of the array A.  LDA >= M.       ISEED   (input/output) INTEGER array, dimension (4)               On entry, the seed of the random number generator; the array               elements must be between 0 and 4095, and ISEED(4) must be               odd.               On exit, the seed is updated.       WORK    (workspace) COMPLEX array, dimension (M+N)       INFO    (output) INTEGER               = 0: successful exit               < 0: if INFO = -i, the i-th argument had an illegal value       =====================================================================          Test the input arguments          Parameter adjustments */    --d;    a_dim1 = *lda;    a_offset = a_dim1 + 1;    a -= a_offset;    --iseed;    --work;    /* Function Body */    *info = 0;    if (*m < 0) {	*info = -1;    } else if (*n < 0) {	*info = -2;    } else if (*kl < 0 || *kl > *m - 1) {	*info = -3;    } else if (*ku < 0 || *ku > *n - 1) {	*info = -4;    } else if (*lda < max(1,*m)) {	*info = -7;    }    if (*info < 0) {	i__1 = -(*info);	xerbla_("CLAGGE", &i__1);	return 0;    }/*     initialize A to diagonal matrix */    i__1 = *n;    for (j = 1; j <= i__1; ++j) {	i__2 = *m;	for (i = 1; i <= i__2; ++i) {	    i__3 = i + j * a_dim1;	    a[i__3].r = 0.f, a[i__3].i = 0.f;/* L10: */	}/* L20: */    }    i__1 = min(*m,*n);    for (i = 1; i <= i__1; ++i) {	i__2 = i + i * a_dim1;	i__3 = i;	a[i__2].r = d[i__3], a[i__2].i = 0.f;/* L30: */    }/*     pre- and post-multiply A by random unitary matrices */    for (i = min(*m,*n); i >= 1; --i) {	if (i < *m) {/*           generate random reflection */	    i__1 = *m - i + 1;	    clarnv_(&c__3, &iseed[1], &i__1, &work[1]);	    i__1 = *m - i + 1;	    wn = scnrm2_(&i__1, &work[1], &c__1);	    d__1 = wn / c_abs(&work[1]);	    q__1.r = d__1 * work[1].r, q__1.i = d__1 * work[1].i;	    wa.r = q__1.r, wa.i = q__1.i;	    if (wn == 0.f) {		tau.r = 0.f, tau.i = 0.f;	    } else {		q__1.r = work[1].r + wa.r, q__1.i = work[1].i + wa.i;		wb.r = q__1.r, wb.i = q__1.i;		i__1 = *m - i;		c_div(&q__1, &c_b2, &wb);		cscal_(&i__1, &q__1, &work[2], &c__1);		work[1].r = 1.f, work[1].i = 0.f;		c_div(&q__1, &wb, &wa);		d__1 = q__1.r;		tau.r = d__1, tau.i = 0.f;	    }/*           multiply A(i:m,i:n) by random reflection from the left */	    i__1 = *m - i + 1;	    i__2 = *n - i + 1;	    cgemv_("Conjugate transpose", &i__1, &i__2, &c_b2, &a[i + i * 		    a_dim1], lda, &work[1], &c__1, &c_b1, &work[*m + 1], &		    c__1);	    i__1 = *m - i + 1;	    i__2 = *n - i + 1;	    q__1.r = -(doublereal)tau.r, q__1.i = -(doublereal)tau.i;	    cgerc_(&i__1, &i__2, &q__1, &work[1], &c__1, &work[*m + 1], &c__1,		     &a[i + i * a_dim1], lda);	}	if (i < *n) {/*           generate random reflection */	    i__1 = *n - i + 1;	    clarnv_(&c__3, &iseed[1], &i__1, &work[1]);	    i__1 = *n - i + 1;	    wn = scnrm2_(&i__1, &work[1], &c__1);	    d__1 = wn / c_abs(&work[1]);	    q__1.r = d__1 * work[1].r, q__1.i = d__1 * work[1].i;	    wa.r = q__1.r, wa.i = q__1.i;	    if (wn == 0.f) {		tau.r = 0.f, tau.i = 0.f;	    } else {		q__1.r = work[1].r + wa.r, q__1.i = work[1].i + wa.i;		wb.r = q__1.r, wb.i = q__1.i;		i__1 = *n - i;		c_div(&q__1, &c_b2, &wb);		cscal_(&i__1, &q__1, &work[2], &c__1);		work[1].r = 1.f, work[1].i = 0.f;		c_div(&q__1, &wb, &wa);		d__1 = q__1.r;		tau.r = d__1, tau.i = 0.f;	    }/*           multiply A(i:m,i:n) by random reflection from the right */	    i__1 = *m - i + 1;	    i__2 = *n - i + 1;	    cgemv_("No transpose", &i__1, &i__2, &c_b2, &a[i + i * a_dim1], 		    lda, &work[1], &c__1, &c_b1, &work[*n + 1], &c__1);	    i__1 = *m - i + 1;	    i__2 = *n - i + 1;	    q__1.r = -(doublereal)tau.r, q__1.i = -(doublereal)tau.i;	    cgerc_(&i__1, &i__2, &q__1, &work[*n + 1], &c__1, &work[1], &c__1,		     &a[i + i * a_dim1], lda);	}/* L40: */    }/*     Reduce number of subdiagonals to KL and number of superdiagonals          to KU      Computing MAX */    i__2 = *m - 1 - *kl, i__3 = *n - 1 - *ku;    i__1 = max(i__2,i__3);    for (i = 1; i <= i__1; ++i) {	if (*kl <= *ku) {/*           annihilate subdiagonal elements first (necessary if KL = 0)      Computing MIN */	    i__2 = *m - 1 - *kl;	    if (i <= min(i__2,*n)) {/*              generate reflection to annihilate A(kl+i+1:m,i) */		i__2 = *m - *kl - i + 1;		wn = scnrm2_(&i__2, &a[*kl + i + i * a_dim1], &c__1);		d__1 = wn / c_abs(&a[*kl + i + i * a_dim1]);		i__2 = *kl + i + i * a_dim1;		q__1.r = d__1 * a[i__2].r, q__1.i = d__1 * a[i__2].i;		wa.r = q__1.r, wa.i = q__1.i;		if (wn == 0.f) {		    tau.r = 0.f, tau.i = 0.f;		} else {		    i__2 = *kl + i + i * a_dim1;		    q__1.r = a[i__2].r + wa.r, q__1.i = a[i__2].i + wa.i;		    wb.r = q__1.r, wb.i = q__1.i;		    i__2 = *m - *kl - i;		    c_div(&q__1, &c_b2, &wb);		    cscal_(&i__2, &q__1, &a[*kl + i + 1 + i * a_dim1], &c__1);		    i__2 = *kl + i + i * a_dim1;		    a[i__2].r = 1.f, a[i__2].i = 0.f;		    c_div(&q__1, &wb, &wa);		    d__1 = q__1.r;		    tau.r = d__1, tau.i = 0.f;		}/*              apply reflection to A(kl+i:m,i+1:n) from the left */		i__2 = *m - *kl - i + 1;		i__3 = *n - i;		cgemv_("Conjugate transpose", &i__2, &i__3, &c_b2, &a[*kl + i 			+ (i + 1) * a_dim1], lda, &a[*kl + i + i * a_dim1], &			c__1, &c_b1, &work[1], &c__1);		i__2 = *m - *kl - i + 1;		i__3 = *n - i;		q__1.r = -(doublereal)tau.r, q__1.i = -(doublereal)tau.i;		cgerc_(&i__2, &i__3, &q__1, &a[*kl + i + i * a_dim1], &c__1, &			work[1], &c__1, &a[*kl + i + (i + 1) * a_dim1], lda);		i__2 = *kl + i + i * a_dim1;		q__1.r = -(doublereal)wa.r, q__1.i = -(doublereal)wa.i;		a[i__2].r = q__1.r, a[i__2].i = q__1.i;	    }/* Computing MIN */	    i__2 = *n - 1 - *ku;	    if (i <= min(i__2,*m)) {/*              generate reflection to annihilate A(i,ku+i+1:n) */		i__2 = *n - *ku - i + 1;		wn = scnrm2_(&i__2, &a[i + (*ku + i) * a_dim1], lda);		d__1 = wn / c_abs(&a[i + (*ku + i) * a_dim1]);		i__2 = i + (*ku + i) * a_dim1;		q__1.r = d__1 * a[i__2].r, q__1.i = d__1 * a[i__2].i;		wa.r = q__1.r, wa.i = q__1.i;		if (wn == 0.f) {		    tau.r = 0.f, tau.i = 0.f;		} else {		    i__2 = i + (*ku + i) * a_dim1;		    q__1.r = a[i__2].r + wa.r, q__1.i = a[i__2].i + wa.i;		    wb.r = q__1.r, wb.i = q__1.i;		    i__2 = *n - *ku - i;		    c_div(&q__1, &c_b2, &wb);		    cscal_(&i__2, &q__1, &a[i + (*ku + i + 1) * a_dim1], lda);		    i__2 = i + (*ku + i) * a_dim1;		    a[i__2].r = 1.f, a[i__2].i = 0.f;		    c_div(&q__1, &wb, &wa);		    d__1 = q__1.r;		    tau.r = d__1, tau.i = 0.f;		}/*              apply reflection to A(i+1:m,ku+i:n) from the right */		i__2 = *n - *ku - i + 1;		clacgv_(&i__2, &a[i + (*ku + i) * a_dim1], lda);		i__2 = *m - i;		i__3 = *n - *ku - i + 1;		cgemv_("No transpose", &i__2, &i__3, &c_b2, &a[i + 1 + (*ku + 			i) * a_dim1], lda, &a[i + (*ku + i) * a_dim1], lda, &			c_b1, &work[1], &c__1);		i__2 = *m - i;		i__3 = *n - *ku - i + 1;		q__1.r = -(doublereal)tau.r, q__1.i = -(doublereal)tau.i;		cgerc_(&i__2, &i__3, &q__1, &work[1], &c__1, &a[i + (*ku + i) 			* a_dim1], lda, &a[i + 1 + (*ku + i) * a_dim1], lda);		i__2 = i + (*ku + i) * a_dim1;		q__1.r = -(doublereal)wa.r, q__1.i = -(doublereal)wa.i;		a[i__2].r = q__1.r, a[i__2].i = q__1.i;	    }	} else {/*           annihilate superdiagonal elements first (necessary if                KU = 0)      Computing MIN */	    i__2 = *n - 1 - *ku;	    if (i <= min(i__2,*m)) {/*              generate reflection to annihilate A(i,ku+i+1:n) */		i__2 = *n - *ku - i + 1;		wn = scnrm2_(&i__2, &a[i + (*ku + i) * a_dim1], lda);		d__1 = wn / c_abs(&a[i + (*ku + i) * a_dim1]);		i__2 = i + (*ku + i) * a_dim1;		q__1.r = d__1 * a[i__2].r, q__1.i = d__1 * a[i__2].i;		wa.r = q__1.r, wa.i = q__1.i;		if (wn == 0.f) {		    tau.r = 0.f, tau.i = 0.f;		} else {		    i__2 = i + (*ku + i) * a_dim1;		    q__1.r = a[i__2].r + wa.r, q__1.i = a[i__2].i + wa.i;		    wb.r = q__1.r, wb.i = q__1.i;		    i__2 = *n - *ku - i;		    c_div(&q__1, &c_b2, &wb);		    cscal_(&i__2, &q__1, &a[i + (*ku + i + 1) * a_dim1], lda);		    i__2 = i + (*ku + i) * a_dim1;		    a[i__2].r = 1.f, a[i__2].i = 0.f;		    c_div(&q__1, &wb, &wa);		    d__1 = q__1.r;		    tau.r = d__1, tau.i = 0.f;		}/*              apply reflection to A(i+1:m,ku+i:n) from the right */		i__2 = *n - *ku - i + 1;		clacgv_(&i__2, &a[i + (*ku + i) * a_dim1], lda);		i__2 = *m - i;		i__3 = *n - *ku - i + 1;		cgemv_("No transpose", &i__2, &i__3, &c_b2, &a[i + 1 + (*ku + 			i) * a_dim1], lda, &a[i + (*ku + i) * a_dim1], lda, &			c_b1, &work[1], &c__1);		i__2 = *m - i;		i__3 = *n - *ku - i + 1;		q__1.r = -(doublereal)tau.r, q__1.i = -(doublereal)tau.i;		cgerc_(&i__2, &i__3, &q__1, &work[1], &c__1, &a[i + (*ku + i) 			* a_dim1], lda, &a[i + 1 + (*ku + i) * a_dim1], lda);		i__2 = i + (*ku + i) * a_dim1;		q__1.r = -(doublereal)wa.r, q__1.i = -(doublereal)wa.i;		a[i__2].r = q__1.r, a[i__2].i = q__1.i;	    }/* Computing MIN */	    i__2 = *m - 1 - *kl;	    if (i <= min(i__2,*n)) {/*              generate reflection to annihilate A(kl+i+1:m,i) */		i__2 = *m - *kl - i + 1;		wn = scnrm2_(&i__2, &a[*kl + i + i * a_dim1], &c__1);		d__1 = wn / c_abs(&a[*kl + i + i * a_dim1]);		i__2 = *kl + i + i * a_dim1;		q__1.r = d__1 * a[i__2].r, q__1.i = d__1 * a[i__2].i;		wa.r = q__1.r, wa.i = q__1.i;		if (wn == 0.f) {		    tau.r = 0.f, tau.i = 0.f;		} else {		    i__2 = *kl + i + i * a_dim1;		    q__1.r = a[i__2].r + wa.r, q__1.i = a[i__2].i + wa.i;		    wb.r = q__1.r, wb.i = q__1.i;		    i__2 = *m - *kl - i;		    c_div(&q__1, &c_b2, &wb);		    cscal_(&i__2, &q__1, &a[*kl + i + 1 + i * a_dim1], &c__1);		    i__2 = *kl + i + i * a_dim1;		    a[i__2].r = 1.f, a[i__2].i = 0.f;		    c_div(&q__1, &wb, &wa);		    d__1 = q__1.r;		    tau.r = d__1, tau.i = 0.f;		}/*              apply reflection to A(kl+i:m,i+1:n) from the left */		i__2 = *m - *kl - i + 1;		i__3 = *n - i;		cgemv_("Conjugate transpose", &i__2, &i__3, &c_b2, &a[*kl + i 			+ (i + 1) * a_dim1], lda, &a[*kl + i + i * a_dim1], &			c__1, &c_b1, &work[1], &c__1);		i__2 = *m - *kl - i + 1;		i__3 = *n - i;		q__1.r = -(doublereal)tau.r, q__1.i = -(doublereal)tau.i;		cgerc_(&i__2, &i__3, &q__1, &a[*kl + i + i * a_dim1], &c__1, &			work[1], &c__1, &a[*kl + i + (i + 1) * a_dim1], lda);		i__2 = *kl + i + i * a_dim1;		q__1.r = -(doublereal)wa.r, q__1.i = -(doublereal)wa.i;		a[i__2].r = q__1.r, a[i__2].i = q__1.i;	    }	}	i__2 = *m;	for (j = *kl + i + 1; j <= i__2; ++j) {	    i__3 = j + i * a_dim1;	    a[i__3].r = 0.f, a[i__3].i = 0.f;/* L50: */	}	i__2 = *n;	for (j = *ku + i + 1; j <= i__2; ++j) {	    i__3 = i + j * a_dim1;	    a[i__3].r = 0.f, a[i__3].i = 0.f;/* L60: */	}/* L70: */    }    return 0;/*     End of CLAGGE */} /* clagge_ */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -