⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 slagge.c

📁 SuperLU is a general purpose library for the direct solution of large, sparse, nonsymmetric systems
💻 C
字号:
/*  -- translated by f2c (version 19940927).   You must link the resulting object file with the libraries:	-lf2c -lm   (in that order)*/#include "f2c.h"/* Table of constant values */static integer c__3 = 3;static integer c__1 = 1;static real c_b11 = 1.f;static real c_b13 = 0.f;/* Subroutine */ int slagge_(integer *m, integer *n, integer *kl, integer *ku,	 real *d, real *a, integer *lda, integer *iseed, real *work, integer *	info){    /* System generated locals */    integer a_dim1, a_offset, i__1, i__2, i__3;    real r__1;    /* Builtin functions */    double r_sign(real *, real *);    /* Local variables */    extern /* Subroutine */ int sger_(integer *, integer *, real *, real *, 	    integer *, real *, integer *, real *, integer *);    extern real snrm2_(integer *, real *, integer *);    static integer i, j;    extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *), 	    sgemv_(char *, integer *, integer *, real *, real *, integer *, 	    real *, integer *, real *, real *, integer *);    static real wa, wb, wn;    extern /* Subroutine */ int xerbla_(char *, integer *), slarnv_(	    integer *, integer *, integer *, real *);    static real tau;/*  -- LAPACK auxiliary test routine (version 2.0)          Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,          Courant Institute, Argonne National Lab, and Rice University          February 29, 1992       Purpose       =======       SLAGGE generates a real general m by n matrix A, by pre- and post-       multiplying a real diagonal matrix D with random orthogonal matrices:       A = U*D*V. The lower and upper bandwidths may then be reduced to       kl and ku by additional orthogonal transformations.       Arguments       =========       M       (input) INTEGER               The number of rows of the matrix A.  M >= 0.       N       (input) INTEGER               The number of columns of the matrix A.  N >= 0.       KL      (input) INTEGER               The number of nonzero subdiagonals within the band of A.               0 <= KL <= M-1.       KU      (input) INTEGER               The number of nonzero superdiagonals within the band of A.               0 <= KU <= N-1.       D       (input) REAL array, dimension (min(M,N))               The diagonal elements of the diagonal matrix D.       A       (output) REAL array, dimension (LDA,N)               The generated m by n matrix A.       LDA     (input) INTEGER               The leading dimension of the array A.  LDA >= M.       ISEED   (input/output) INTEGER array, dimension (4)               On entry, the seed of the random number generator; the array               elements must be between 0 and 4095, and ISEED(4) must be               odd.               On exit, the seed is updated.       WORK    (workspace) REAL array, dimension (M+N)       INFO    (output) INTEGER               = 0: successful exit               < 0: if INFO = -i, the i-th argument had an illegal value       =====================================================================          Test the input arguments          Parameter adjustments */    --d;    a_dim1 = *lda;    a_offset = a_dim1 + 1;    a -= a_offset;    --iseed;    --work;    /* Function Body */    *info = 0;    if (*m < 0) {	*info = -1;    } else if (*n < 0) {	*info = -2;    } else if (*kl < 0 || *kl > *m - 1) {	*info = -3;    } else if (*ku < 0 || *ku > *n - 1) {	*info = -4;    } else if (*lda < max(1,*m)) {	*info = -7;    }    if (*info < 0) {	i__1 = -(*info);	xerbla_("SLAGGE", &i__1);	return 0;    }/*     initialize A to diagonal matrix */    i__1 = *n;    for (j = 1; j <= i__1; ++j) {	i__2 = *m;	for (i = 1; i <= i__2; ++i) {	    a[i + j * a_dim1] = 0.f;/* L10: */	}/* L20: */    }    i__1 = min(*m,*n);    for (i = 1; i <= i__1; ++i) {	a[i + i * a_dim1] = d[i];/* L30: */    }/*     pre- and post-multiply A by random orthogonal matrices */    for (i = min(*m,*n); i >= 1; --i) {	if (i < *m) {/*           generate random reflection */	    i__1 = *m - i + 1;	    slarnv_(&c__3, &iseed[1], &i__1, &work[1]);	    i__1 = *m - i + 1;	    wn = snrm2_(&i__1, &work[1], &c__1);	    wa = r_sign(&wn, &work[1]);	    if (wn == 0.f) {		tau = 0.f;	    } else {		wb = work[1] + wa;		i__1 = *m - i;		r__1 = 1.f / wb;		sscal_(&i__1, &r__1, &work[2], &c__1);		work[1] = 1.f;		tau = wb / wa;	    }/*           multiply A(i:m,i:n) by random reflection from the left */	    i__1 = *m - i + 1;	    i__2 = *n - i + 1;	    sgemv_("Transpose", &i__1, &i__2, &c_b11, &a[i + i * a_dim1], lda,		     &work[1], &c__1, &c_b13, &work[*m + 1], &c__1);	    i__1 = *m - i + 1;	    i__2 = *n - i + 1;	    r__1 = -(doublereal)tau;	    sger_(&i__1, &i__2, &r__1, &work[1], &c__1, &work[*m + 1], &c__1, 		    &a[i + i * a_dim1], lda);	}	if (i < *n) {/*           generate random reflection */	    i__1 = *n - i + 1;	    slarnv_(&c__3, &iseed[1], &i__1, &work[1]);	    i__1 = *n - i + 1;	    wn = snrm2_(&i__1, &work[1], &c__1);	    wa = r_sign(&wn, &work[1]);	    if (wn == 0.f) {		tau = 0.f;	    } else {		wb = work[1] + wa;		i__1 = *n - i;		r__1 = 1.f / wb;		sscal_(&i__1, &r__1, &work[2], &c__1);		work[1] = 1.f;		tau = wb / wa;	    }/*           multiply A(i:m,i:n) by random reflection from the right */	    i__1 = *m - i + 1;	    i__2 = *n - i + 1;	    sgemv_("No transpose", &i__1, &i__2, &c_b11, &a[i + i * a_dim1], 		    lda, &work[1], &c__1, &c_b13, &work[*n + 1], &c__1);	    i__1 = *m - i + 1;	    i__2 = *n - i + 1;	    r__1 = -(doublereal)tau;	    sger_(&i__1, &i__2, &r__1, &work[*n + 1], &c__1, &work[1], &c__1, 		    &a[i + i * a_dim1], lda);	}/* L40: */    }/*     Reduce number of subdiagonals to KL and number of superdiagonals          to KU      Computing MAX */    i__2 = *m - 1 - *kl, i__3 = *n - 1 - *ku;    i__1 = max(i__2,i__3);    for (i = 1; i <= i__1; ++i) {	if (*kl <= *ku) {/*           annihilate subdiagonal elements first (necessary if KL = 0)      Computing MIN */	    i__2 = *m - 1 - *kl;	    if (i <= min(i__2,*n)) {/*              generate reflection to annihilate A(kl+i+1:m,i) */		i__2 = *m - *kl - i + 1;		wn = snrm2_(&i__2, &a[*kl + i + i * a_dim1], &c__1);		wa = r_sign(&wn, &a[*kl + i + i * a_dim1]);		if (wn == 0.f) {		    tau = 0.f;		} else {		    wb = a[*kl + i + i * a_dim1] + wa;		    i__2 = *m - *kl - i;		    r__1 = 1.f / wb;		    sscal_(&i__2, &r__1, &a[*kl + i + 1 + i * a_dim1], &c__1);		    a[*kl + i + i * a_dim1] = 1.f;		    tau = wb / wa;		}/*              apply reflection to A(kl+i:m,i+1:n) from the left */		i__2 = *m - *kl - i + 1;		i__3 = *n - i;		sgemv_("Transpose", &i__2, &i__3, &c_b11, &a[*kl + i + (i + 1)			 * a_dim1], lda, &a[*kl + i + i * a_dim1], &c__1, &			c_b13, &work[1], &c__1);		i__2 = *m - *kl - i + 1;		i__3 = *n - i;		r__1 = -(doublereal)tau;		sger_(&i__2, &i__3, &r__1, &a[*kl + i + i * a_dim1], &c__1, &			work[1], &c__1, &a[*kl + i + (i + 1) * a_dim1], lda);		a[*kl + i + i * a_dim1] = -(doublereal)wa;	    }/* Computing MIN */	    i__2 = *n - 1 - *ku;	    if (i <= min(i__2,*m)) {/*              generate reflection to annihilate A(i,ku+i+1:n) */		i__2 = *n - *ku - i + 1;		wn = snrm2_(&i__2, &a[i + (*ku + i) * a_dim1], lda);		wa = r_sign(&wn, &a[i + (*ku + i) * a_dim1]);		if (wn == 0.f) {		    tau = 0.f;		} else {		    wb = a[i + (*ku + i) * a_dim1] + wa;		    i__2 = *n - *ku - i;		    r__1 = 1.f / wb;		    sscal_(&i__2, &r__1, &a[i + (*ku + i + 1) * a_dim1], lda);		    a[i + (*ku + i) * a_dim1] = 1.f;		    tau = wb / wa;		}/*              apply reflection to A(i+1:m,ku+i:n) from the right */		i__2 = *m - i;		i__3 = *n - *ku - i + 1;		sgemv_("No transpose", &i__2, &i__3, &c_b11, &a[i + 1 + (*ku 			+ i) * a_dim1], lda, &a[i + (*ku + i) * a_dim1], lda, 			&c_b13, &work[1], &c__1);		i__2 = *m - i;		i__3 = *n - *ku - i + 1;		r__1 = -(doublereal)tau;		sger_(&i__2, &i__3, &r__1, &work[1], &c__1, &a[i + (*ku + i) *			 a_dim1], lda, &a[i + 1 + (*ku + i) * a_dim1], lda);		a[i + (*ku + i) * a_dim1] = -(doublereal)wa;	    }	} else {/*           annihilate superdiagonal elements first (necessary if                KU = 0)      Computing MIN */	    i__2 = *n - 1 - *ku;	    if (i <= min(i__2,*m)) {/*              generate reflection to annihilate A(i,ku+i+1:n) */		i__2 = *n - *ku - i + 1;		wn = snrm2_(&i__2, &a[i + (*ku + i) * a_dim1], lda);		wa = r_sign(&wn, &a[i + (*ku + i) * a_dim1]);		if (wn == 0.f) {		    tau = 0.f;		} else {		    wb = a[i + (*ku + i) * a_dim1] + wa;		    i__2 = *n - *ku - i;		    r__1 = 1.f / wb;		    sscal_(&i__2, &r__1, &a[i + (*ku + i + 1) * a_dim1], lda);		    a[i + (*ku + i) * a_dim1] = 1.f;		    tau = wb / wa;		}/*              apply reflection to A(i+1:m,ku+i:n) from the right */		i__2 = *m - i;		i__3 = *n - *ku - i + 1;		sgemv_("No transpose", &i__2, &i__3, &c_b11, &a[i + 1 + (*ku 			+ i) * a_dim1], lda, &a[i + (*ku + i) * a_dim1], lda, 			&c_b13, &work[1], &c__1);		i__2 = *m - i;		i__3 = *n - *ku - i + 1;		r__1 = -(doublereal)tau;		sger_(&i__2, &i__3, &r__1, &work[1], &c__1, &a[i + (*ku + i) *			 a_dim1], lda, &a[i + 1 + (*ku + i) * a_dim1], lda);		a[i + (*ku + i) * a_dim1] = -(doublereal)wa;	    }/* Computing MIN */	    i__2 = *m - 1 - *kl;	    if (i <= min(i__2,*n)) {/*              generate reflection to annihilate A(kl+i+1:m,i) */		i__2 = *m - *kl - i + 1;		wn = snrm2_(&i__2, &a[*kl + i + i * a_dim1], &c__1);		wa = r_sign(&wn, &a[*kl + i + i * a_dim1]);		if (wn == 0.f) {		    tau = 0.f;		} else {		    wb = a[*kl + i + i * a_dim1] + wa;		    i__2 = *m - *kl - i;		    r__1 = 1.f / wb;		    sscal_(&i__2, &r__1, &a[*kl + i + 1 + i * a_dim1], &c__1);		    a[*kl + i + i * a_dim1] = 1.f;		    tau = wb / wa;		}/*              apply reflection to A(kl+i:m,i+1:n) from the left */		i__2 = *m - *kl - i + 1;		i__3 = *n - i;		sgemv_("Transpose", &i__2, &i__3, &c_b11, &a[*kl + i + (i + 1)			 * a_dim1], lda, &a[*kl + i + i * a_dim1], &c__1, &			c_b13, &work[1], &c__1);		i__2 = *m - *kl - i + 1;		i__3 = *n - i;		r__1 = -(doublereal)tau;		sger_(&i__2, &i__3, &r__1, &a[*kl + i + i * a_dim1], &c__1, &			work[1], &c__1, &a[*kl + i + (i + 1) * a_dim1], lda);		a[*kl + i + i * a_dim1] = -(doublereal)wa;	    }	}	i__2 = *m;	for (j = *kl + i + 1; j <= i__2; ++j) {	    a[j + i * a_dim1] = 0.f;/* L50: */	}	i__2 = *n;	for (j = *ku + i + 1; j <= i__2; ++j) {	    a[i + j * a_dim1] = 0.f;/* L60: */	}/* L70: */    }    return 0;/*     End of SLAGGE */} /* slagge_ */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -