⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 slagsy.c

📁 SuperLU is a general purpose library for the direct solution of large, sparse, nonsymmetric systems
💻 C
字号:
/*  -- translated by f2c (version 19940927).   You must link the resulting object file with the libraries:	-lf2c -lm   (in that order)*/#include "f2c.h"/* Table of constant values */static integer c__3 = 3;static integer c__1 = 1;static real c_b12 = 0.f;static real c_b19 = -1.f;static real c_b26 = 1.f;/* Subroutine */ int slagsy_(integer *n, integer *k, real *d, real *a, 	integer *lda, integer *iseed, real *work, integer *info){    /* System generated locals */    integer a_dim1, a_offset, i__1, i__2, i__3;    real r__1;    /* Builtin functions */    double r_sign(real *, real *);    /* Local variables */    extern /* Subroutine */ int sger_(integer *, integer *, real *, real *, 	    integer *, real *, integer *, real *, integer *);    extern real sdot_(integer *, real *, integer *, real *, integer *), 	    snrm2_(integer *, real *, integer *);    static integer i, j;    extern /* Subroutine */ int ssyr2_(char *, integer *, real *, real *, 	    integer *, real *, integer *, real *, integer *);    static real alpha;    extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *), 	    sgemv_(char *, integer *, integer *, real *, real *, integer *, 	    real *, integer *, real *, real *, integer *), saxpy_(	    integer *, real *, real *, integer *, real *, integer *), ssymv_(	    char *, integer *, real *, real *, integer *, real *, integer *, 	    real *, real *, integer *);    static real wa, wb, wn;    extern /* Subroutine */ int xerbla_(char *, integer *), slarnv_(	    integer *, integer *, integer *, real *);    static real tau;/*  -- LAPACK auxiliary test routine (version 2.0)          Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,          Courant Institute, Argonne National Lab, and Rice University          February 29, 1992       Purpose       =======       SLAGSY generates a real symmetric matrix A, by pre- and post-       multiplying a real diagonal matrix D with a random orthogonal matrix:       A = U*D*U'. The semi-bandwidth may then be reduced to k by additional       orthogonal transformations.       Arguments       =========       N       (input) INTEGER               The order of the matrix A.  N >= 0.       K       (input) INTEGER               The number of nonzero subdiagonals within the band of A.               0 <= K <= N-1.       D       (input) REAL array, dimension (N)               The diagonal elements of the diagonal matrix D.       A       (output) REAL array, dimension (LDA,N)               The generated n by n symmetric matrix A (the full matrix is               stored).       LDA     (input) INTEGER               The leading dimension of the array A.  LDA >= N.       ISEED   (input/output) INTEGER array, dimension (4)               On entry, the seed of the random number generator; the array               elements must be between 0 and 4095, and ISEED(4) must be               odd.               On exit, the seed is updated.       WORK    (workspace) REAL array, dimension (2*N)       INFO    (output) INTEGER               = 0: successful exit               < 0: if INFO = -i, the i-th argument had an illegal value       =====================================================================          Test the input arguments          Parameter adjustments */    --d;    a_dim1 = *lda;    a_offset = a_dim1 + 1;    a -= a_offset;    --iseed;    --work;    /* Function Body */    *info = 0;    if (*n < 0) {	*info = -1;    } else if (*k < 0 || *k > *n - 1) {	*info = -2;    } else if (*lda < max(1,*n)) {	*info = -5;    }    if (*info < 0) {	i__1 = -(*info);	xerbla_("SLAGSY", &i__1);	return 0;    }/*     initialize lower triangle of A to diagonal matrix */    i__1 = *n;    for (j = 1; j <= i__1; ++j) {	i__2 = *n;	for (i = j + 1; i <= i__2; ++i) {	    a[i + j * a_dim1] = 0.f;/* L10: */	}/* L20: */    }    i__1 = *n;    for (i = 1; i <= i__1; ++i) {	a[i + i * a_dim1] = d[i];/* L30: */    }/*     Generate lower triangle of symmetric matrix */    for (i = *n - 1; i >= 1; --i) {/*        generate random reflection */	i__1 = *n - i + 1;	slarnv_(&c__3, &iseed[1], &i__1, &work[1]);	i__1 = *n - i + 1;	wn = snrm2_(&i__1, &work[1], &c__1);	wa = r_sign(&wn, &work[1]);	if (wn == 0.f) {	    tau = 0.f;	} else {	    wb = work[1] + wa;	    i__1 = *n - i;	    r__1 = 1.f / wb;	    sscal_(&i__1, &r__1, &work[2], &c__1);	    work[1] = 1.f;	    tau = wb / wa;	}/*        apply random reflection to A(i:n,i:n) from the left             and the right             compute  y := tau * A * u */	i__1 = *n - i + 1;	ssymv_("Lower", &i__1, &tau, &a[i + i * a_dim1], lda, &work[1], &c__1,		 &c_b12, &work[*n + 1], &c__1);/*        compute  v := y - 1/2 * tau * ( y, u ) * u */	i__1 = *n - i + 1;	alpha = tau * -.5f * sdot_(&i__1, &work[*n + 1], &c__1, &work[1], &		c__1);	i__1 = *n - i + 1;	saxpy_(&i__1, &alpha, &work[1], &c__1, &work[*n + 1], &c__1);/*        apply the transformation as a rank-2 update to A(i:n,i:n) */	i__1 = *n - i + 1;	ssyr2_("Lower", &i__1, &c_b19, &work[1], &c__1, &work[*n + 1], &c__1, 		&a[i + i * a_dim1], lda);/* L40: */    }/*     Reduce number of subdiagonals to K */    i__1 = *n - 1 - *k;    for (i = 1; i <= i__1; ++i) {/*        generate reflection to annihilate A(k+i+1:n,i) */	i__2 = *n - *k - i + 1;	wn = snrm2_(&i__2, &a[*k + i + i * a_dim1], &c__1);	wa = r_sign(&wn, &a[*k + i + i * a_dim1]);	if (wn == 0.f) {	    tau = 0.f;	} else {	    wb = a[*k + i + i * a_dim1] + wa;	    i__2 = *n - *k - i;	    r__1 = 1.f / wb;	    sscal_(&i__2, &r__1, &a[*k + i + 1 + i * a_dim1], &c__1);	    a[*k + i + i * a_dim1] = 1.f;	    tau = wb / wa;	}/*        apply reflection to A(k+i:n,i+1:k+i-1) from the left */	i__2 = *n - *k - i + 1;	i__3 = *k - 1;	sgemv_("Transpose", &i__2, &i__3, &c_b26, &a[*k + i + (i + 1) * 		a_dim1], lda, &a[*k + i + i * a_dim1], &c__1, &c_b12, &work[1]		, &c__1);	i__2 = *n - *k - i + 1;	i__3 = *k - 1;	r__1 = -(doublereal)tau;	sger_(&i__2, &i__3, &r__1, &a[*k + i + i * a_dim1], &c__1, &work[1], &		c__1, &a[*k + i + (i + 1) * a_dim1], lda);/*        apply reflection to A(k+i:n,k+i:n) from the left and the right             compute  y := tau * A * u */	i__2 = *n - *k - i + 1;	ssymv_("Lower", &i__2, &tau, &a[*k + i + (*k + i) * a_dim1], lda, &a[*		k + i + i * a_dim1], &c__1, &c_b12, &work[1], &c__1);/*        compute  v := y - 1/2 * tau * ( y, u ) * u */	i__2 = *n - *k - i + 1;	alpha = tau * -.5f * sdot_(&i__2, &work[1], &c__1, &a[*k + i + i * 		a_dim1], &c__1);	i__2 = *n - *k - i + 1;	saxpy_(&i__2, &alpha, &a[*k + i + i * a_dim1], &c__1, &work[1], &c__1)		;/*        apply symmetric rank-2 update to A(k+i:n,k+i:n) */	i__2 = *n - *k - i + 1;	ssyr2_("Lower", &i__2, &c_b19, &a[*k + i + i * a_dim1], &c__1, &work[		1], &c__1, &a[*k + i + (*k + i) * a_dim1], lda);	a[*k + i + i * a_dim1] = -(doublereal)wa;	i__2 = *n;	for (j = *k + i + 1; j <= i__2; ++j) {	    a[j + i * a_dim1] = 0.f;/* L50: */	}/* L60: */    }/*     Store full symmetric matrix */    i__1 = *n;    for (j = 1; j <= i__1; ++j) {	i__2 = *n;	for (i = j + 1; i <= i__2; ++i) {	    a[j + i * a_dim1] = a[i + j * a_dim1];/* L70: */	}/* L80: */    }    return 0;/*     End of SLAGSY */} /* slagsy_ */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -