📄 slagsy.c
字号:
/* -- translated by f2c (version 19940927). You must link the resulting object file with the libraries: -lf2c -lm (in that order)*/#include "f2c.h"/* Table of constant values */static integer c__3 = 3;static integer c__1 = 1;static real c_b12 = 0.f;static real c_b19 = -1.f;static real c_b26 = 1.f;/* Subroutine */ int slagsy_(integer *n, integer *k, real *d, real *a, integer *lda, integer *iseed, real *work, integer *info){ /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3; real r__1; /* Builtin functions */ double r_sign(real *, real *); /* Local variables */ extern /* Subroutine */ int sger_(integer *, integer *, real *, real *, integer *, real *, integer *, real *, integer *); extern real sdot_(integer *, real *, integer *, real *, integer *), snrm2_(integer *, real *, integer *); static integer i, j; extern /* Subroutine */ int ssyr2_(char *, integer *, real *, real *, integer *, real *, integer *, real *, integer *); static real alpha; extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *), sgemv_(char *, integer *, integer *, real *, real *, integer *, real *, integer *, real *, real *, integer *), saxpy_( integer *, real *, real *, integer *, real *, integer *), ssymv_( char *, integer *, real *, real *, integer *, real *, integer *, real *, real *, integer *); static real wa, wb, wn; extern /* Subroutine */ int xerbla_(char *, integer *), slarnv_( integer *, integer *, integer *, real *); static real tau;/* -- LAPACK auxiliary test routine (version 2.0) Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University February 29, 1992 Purpose ======= SLAGSY generates a real symmetric matrix A, by pre- and post- multiplying a real diagonal matrix D with a random orthogonal matrix: A = U*D*U'. The semi-bandwidth may then be reduced to k by additional orthogonal transformations. Arguments ========= N (input) INTEGER The order of the matrix A. N >= 0. K (input) INTEGER The number of nonzero subdiagonals within the band of A. 0 <= K <= N-1. D (input) REAL array, dimension (N) The diagonal elements of the diagonal matrix D. A (output) REAL array, dimension (LDA,N) The generated n by n symmetric matrix A (the full matrix is stored). LDA (input) INTEGER The leading dimension of the array A. LDA >= N. ISEED (input/output) INTEGER array, dimension (4) On entry, the seed of the random number generator; the array elements must be between 0 and 4095, and ISEED(4) must be odd. On exit, the seed is updated. WORK (workspace) REAL array, dimension (2*N) INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value ===================================================================== Test the input arguments Parameter adjustments */ --d; a_dim1 = *lda; a_offset = a_dim1 + 1; a -= a_offset; --iseed; --work; /* Function Body */ *info = 0; if (*n < 0) { *info = -1; } else if (*k < 0 || *k > *n - 1) { *info = -2; } else if (*lda < max(1,*n)) { *info = -5; } if (*info < 0) { i__1 = -(*info); xerbla_("SLAGSY", &i__1); return 0; }/* initialize lower triangle of A to diagonal matrix */ i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *n; for (i = j + 1; i <= i__2; ++i) { a[i + j * a_dim1] = 0.f;/* L10: */ }/* L20: */ } i__1 = *n; for (i = 1; i <= i__1; ++i) { a[i + i * a_dim1] = d[i];/* L30: */ }/* Generate lower triangle of symmetric matrix */ for (i = *n - 1; i >= 1; --i) {/* generate random reflection */ i__1 = *n - i + 1; slarnv_(&c__3, &iseed[1], &i__1, &work[1]); i__1 = *n - i + 1; wn = snrm2_(&i__1, &work[1], &c__1); wa = r_sign(&wn, &work[1]); if (wn == 0.f) { tau = 0.f; } else { wb = work[1] + wa; i__1 = *n - i; r__1 = 1.f / wb; sscal_(&i__1, &r__1, &work[2], &c__1); work[1] = 1.f; tau = wb / wa; }/* apply random reflection to A(i:n,i:n) from the left and the right compute y := tau * A * u */ i__1 = *n - i + 1; ssymv_("Lower", &i__1, &tau, &a[i + i * a_dim1], lda, &work[1], &c__1, &c_b12, &work[*n + 1], &c__1);/* compute v := y - 1/2 * tau * ( y, u ) * u */ i__1 = *n - i + 1; alpha = tau * -.5f * sdot_(&i__1, &work[*n + 1], &c__1, &work[1], & c__1); i__1 = *n - i + 1; saxpy_(&i__1, &alpha, &work[1], &c__1, &work[*n + 1], &c__1);/* apply the transformation as a rank-2 update to A(i:n,i:n) */ i__1 = *n - i + 1; ssyr2_("Lower", &i__1, &c_b19, &work[1], &c__1, &work[*n + 1], &c__1, &a[i + i * a_dim1], lda);/* L40: */ }/* Reduce number of subdiagonals to K */ i__1 = *n - 1 - *k; for (i = 1; i <= i__1; ++i) {/* generate reflection to annihilate A(k+i+1:n,i) */ i__2 = *n - *k - i + 1; wn = snrm2_(&i__2, &a[*k + i + i * a_dim1], &c__1); wa = r_sign(&wn, &a[*k + i + i * a_dim1]); if (wn == 0.f) { tau = 0.f; } else { wb = a[*k + i + i * a_dim1] + wa; i__2 = *n - *k - i; r__1 = 1.f / wb; sscal_(&i__2, &r__1, &a[*k + i + 1 + i * a_dim1], &c__1); a[*k + i + i * a_dim1] = 1.f; tau = wb / wa; }/* apply reflection to A(k+i:n,i+1:k+i-1) from the left */ i__2 = *n - *k - i + 1; i__3 = *k - 1; sgemv_("Transpose", &i__2, &i__3, &c_b26, &a[*k + i + (i + 1) * a_dim1], lda, &a[*k + i + i * a_dim1], &c__1, &c_b12, &work[1] , &c__1); i__2 = *n - *k - i + 1; i__3 = *k - 1; r__1 = -(doublereal)tau; sger_(&i__2, &i__3, &r__1, &a[*k + i + i * a_dim1], &c__1, &work[1], & c__1, &a[*k + i + (i + 1) * a_dim1], lda);/* apply reflection to A(k+i:n,k+i:n) from the left and the right compute y := tau * A * u */ i__2 = *n - *k - i + 1; ssymv_("Lower", &i__2, &tau, &a[*k + i + (*k + i) * a_dim1], lda, &a[* k + i + i * a_dim1], &c__1, &c_b12, &work[1], &c__1);/* compute v := y - 1/2 * tau * ( y, u ) * u */ i__2 = *n - *k - i + 1; alpha = tau * -.5f * sdot_(&i__2, &work[1], &c__1, &a[*k + i + i * a_dim1], &c__1); i__2 = *n - *k - i + 1; saxpy_(&i__2, &alpha, &a[*k + i + i * a_dim1], &c__1, &work[1], &c__1) ;/* apply symmetric rank-2 update to A(k+i:n,k+i:n) */ i__2 = *n - *k - i + 1; ssyr2_("Lower", &i__2, &c_b19, &a[*k + i + i * a_dim1], &c__1, &work[ 1], &c__1, &a[*k + i + (*k + i) * a_dim1], lda); a[*k + i + i * a_dim1] = -(doublereal)wa; i__2 = *n; for (j = *k + i + 1; j <= i__2; ++j) { a[j + i * a_dim1] = 0.f;/* L50: */ }/* L60: */ }/* Store full symmetric matrix */ i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *n; for (i = j + 1; i <= i__2; ++i) { a[j + i * a_dim1] = a[i + j * a_dim1];/* L70: */ }/* L80: */ } return 0;/* End of SLAGSY */} /* slagsy_ */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -