⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 zlatm3.c

📁 SuperLU is a general purpose library for the direct solution of large, sparse, nonsymmetric systems
💻 C
字号:
/*  -- translated by f2c (version 19940927).   You must link the resulting object file with the libraries:	-lf2c -lm   (in that order)*/#include "f2c.h"/* Double Complex */ VOID zlatm3_(doublecomplex * ret_val, integer *m, 	integer *n, integer *i, integer *j, integer *isub, integer *jsub, 	integer *kl, integer *ku, integer *idist, integer *iseed, 	doublecomplex *d, integer *igrade, doublecomplex *dl, doublecomplex *	dr, integer *ipvtng, integer *iwork, doublereal *sparse){    /* System generated locals */    integer i__1, i__2;    doublecomplex z__1, z__2, z__3;    /* Builtin functions */    void z_div(doublecomplex *, doublecomplex *, doublecomplex *), d_cnjg(	    doublecomplex *, doublecomplex *);    /* Local variables */    static doublecomplex ctemp;    extern doublereal dlaran_(integer *);    extern /* Double Complex */ VOID zlarnd_(doublecomplex *, integer *, 	    integer *);/*  -- LAPACK auxiliary test routine (version 2.0) --          Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,          Courant Institute, Argonne National Lab, and Rice University          February 29, 1992       Purpose       =======          ZLATM3 returns the (ISUB,JSUB) entry of a random matrix of          dimension (M, N) described by the other paramters. (ISUB,JSUB)          is the final position of the (I,J) entry after pivoting          according to IPVTNG and IWORK. ZLATM3 is called by the          ZLATMR routine in order to build random test matrices. No error          checking on parameters is done, because this routine is called in          a tight loop by ZLATMR which has already checked the parameters.          Use of ZLATM3 differs from CLATM2 in the order in which the random          number generator is called to fill in random matrix entries.          With ZLATM2, the generator is called to fill in the pivoted matrix          columnwise. With ZLATM3, the generator is called to fill in the          matrix columnwise, after which it is pivoted. Thus, ZLATM3 can          be used to construct random matrices which differ only in their          order of rows and/or columns. ZLATM2 is used to construct band          matrices while avoiding calling the random number generator for          entries outside the band (and therefore generating random numbers          in different orders for different pivot orders).          The matrix whose (ISUB,JSUB) entry is returned is constructed as          follows (this routine only computes one entry):            If ISUB is outside (1..M) or JSUB is outside (1..N), return zero               (this is convenient for generating matrices in band format).            Generate a matrix A with random entries of distribution IDIST.            Set the diagonal to D.            Grade the matrix, if desired, from the left (by DL) and/or               from the right (by DR or DL) as specified by IGRADE.            Permute, if desired, the rows and/or columns as specified by               IPVTNG and IWORK.            Band the matrix to have lower bandwidth KL and upper               bandwidth KU.            Set random entries to zero as specified by SPARSE.       Arguments       =========       M      - INTEGER                Number of rows of matrix. Not modified.       N      - INTEGER                Number of columns of matrix. Not modified.       I      - INTEGER                Row of unpivoted entry to be returned. Not modified.       J      - INTEGER                Column of unpivoted entry to be returned. Not modified.       ISUB   - INTEGER                Row of pivoted entry to be returned. Changed on exit.       JSUB   - INTEGER                Column of pivoted entry to be returned. Changed on exit.       KL     - INTEGER                Lower bandwidth. Not modified.       KU     - INTEGER                Upper bandwidth. Not modified.       IDIST  - INTEGER                On entry, IDIST specifies the type of distribution to be                used to generate a random matrix .                1 => real and imaginary parts each UNIFORM( 0, 1 )                2 => real and imaginary parts each UNIFORM( -1, 1 )                3 => real and imaginary parts each NORMAL( 0, 1 )                4 => complex number uniform in DISK( 0 , 1 )                Not modified.       ISEED  - INTEGER            array of dimension ( 4 )                Seed for random number generator.                Changed on exit.       D      - COMPLEX*16            array of dimension ( MIN( I , J ) )                Diagonal entries of matrix. Not modified.       IGRADE - INTEGER                Specifies grading of matrix as follows:                0  => no grading                1  => matrix premultiplied by diag( DL )                2  => matrix postmultiplied by diag( DR )                3  => matrix premultiplied by diag( DL ) and                              postmultiplied by diag( DR )                4  => matrix premultiplied by diag( DL ) and                              postmultiplied by inv( diag( DL ) )                5  => matrix premultiplied by diag( DL ) and                              postmultiplied by diag( CONJG(DL) )                6  => matrix premultiplied by diag( DL ) and                              postmultiplied by diag( DL )                Not modified.       DL     - COMPLEX*16            array ( I or J, as appropriate )                Left scale factors for grading matrix.  Not modified.       DR     - COMPLEX*16            array ( I or J, as appropriate )                Right scale factors for grading matrix.  Not modified.       IPVTNG - INTEGER                On entry specifies pivoting permutations as follows:                0 => none.                1 => row pivoting.                2 => column pivoting.                3 => full pivoting, i.e., on both sides.                Not modified.       IWORK  - INTEGER            array ( I or J, as appropriate )                This array specifies the permutation used. The                row (or column) originally in position K is in                position IWORK( K ) after pivoting.                This differs from IWORK for ZLATM2. Not modified.       SPARSE - DOUBLE PRECISION               between 0. and 1.                On entry specifies the sparsity of the matrix                if sparse matix is to be generated.                SPARSE should lie between 0 and 1.                A uniform ( 0, 1 ) random number x is generated and                compared to SPARSE; if x is larger the matrix entry                is unchanged and if x is smaller the entry is set                to zero. Thus on the average a fraction SPARSE of the                entries will be set to zero.                Not modified.       =====================================================================      -----------------------------------------------------------------------          Check for I and J in range          Parameter adjustments */    --iwork;    --dr;    --dl;    --d;    --iseed;    /* Function Body */    if (*i < 1 || *i > *m || *j < 1 || *j > *n) {	*isub = *i;	*jsub = *j;	 ret_val->r = 0.,  ret_val->i = 0.;	return ;    }/*     Compute subscripts depending on IPVTNG */    if (*ipvtng == 0) {	*isub = *i;	*jsub = *j;    } else if (*ipvtng == 1) {	*isub = iwork[*i];	*jsub = *j;    } else if (*ipvtng == 2) {	*isub = *i;	*jsub = iwork[*j];    } else if (*ipvtng == 3) {	*isub = iwork[*i];	*jsub = iwork[*j];    }/*     Check for banding */    if (*jsub > *isub + *ku || *jsub < *isub - *kl) {	 ret_val->r = 0.,  ret_val->i = 0.;	return ;    }/*     Check for sparsity */    if (*sparse > 0.) {	if (dlaran_(&iseed[1]) < *sparse) {	     ret_val->r = 0.,  ret_val->i = 0.;	    return ;	}    }/*     Compute entry and grade it according to IGRADE */    if (*i == *j) {	i__1 = *i;	ctemp.r = d[i__1].r, ctemp.i = d[i__1].i;    } else {	zlarnd_(&z__1, idist, &iseed[1]);	ctemp.r = z__1.r, ctemp.i = z__1.i;    }    if (*igrade == 1) {	i__1 = *i;	z__1.r = ctemp.r * dl[i__1].r - ctemp.i * dl[i__1].i, z__1.i = 		ctemp.r * dl[i__1].i + ctemp.i * dl[i__1].r;	ctemp.r = z__1.r, ctemp.i = z__1.i;    } else if (*igrade == 2) {	i__1 = *j;	z__1.r = ctemp.r * dr[i__1].r - ctemp.i * dr[i__1].i, z__1.i = 		ctemp.r * dr[i__1].i + ctemp.i * dr[i__1].r;	ctemp.r = z__1.r, ctemp.i = z__1.i;    } else if (*igrade == 3) {	i__1 = *i;	z__2.r = ctemp.r * dl[i__1].r - ctemp.i * dl[i__1].i, z__2.i = 		ctemp.r * dl[i__1].i + ctemp.i * dl[i__1].r;	i__2 = *j;	z__1.r = z__2.r * dr[i__2].r - z__2.i * dr[i__2].i, z__1.i = z__2.r * 		dr[i__2].i + z__2.i * dr[i__2].r;	ctemp.r = z__1.r, ctemp.i = z__1.i;    } else if (*igrade == 4 && *i != *j) {	i__1 = *i;	z__2.r = ctemp.r * dl[i__1].r - ctemp.i * dl[i__1].i, z__2.i = 		ctemp.r * dl[i__1].i + ctemp.i * dl[i__1].r;	z_div(&z__1, &z__2, &dl[*j]);	ctemp.r = z__1.r, ctemp.i = z__1.i;    } else if (*igrade == 5) {	i__1 = *i;	z__2.r = ctemp.r * dl[i__1].r - ctemp.i * dl[i__1].i, z__2.i = 		ctemp.r * dl[i__1].i + ctemp.i * dl[i__1].r;	d_cnjg(&z__3, &dl[*j]);	z__1.r = z__2.r * z__3.r - z__2.i * z__3.i, z__1.i = z__2.r * z__3.i 		+ z__2.i * z__3.r;	ctemp.r = z__1.r, ctemp.i = z__1.i;    } else if (*igrade == 6) {	i__1 = *i;	z__2.r = ctemp.r * dl[i__1].r - ctemp.i * dl[i__1].i, z__2.i = 		ctemp.r * dl[i__1].i + ctemp.i * dl[i__1].r;	i__2 = *j;	z__1.r = z__2.r * dl[i__2].r - z__2.i * dl[i__2].i, z__1.i = z__2.r * 		dl[i__2].i + z__2.i * dl[i__2].r;	ctemp.r = z__1.r, ctemp.i = z__1.i;    }     ret_val->r = ctemp.r,  ret_val->i = ctemp.i;    return ;/*     End of ZLATM3 */} /* zlatm3_ */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -