⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 sgemv.c

📁 SuperLU is a general purpose library for the direct solution of large, sparse, nonsymmetric systems
💻 C
字号:
/*  -- translated by f2c (version 19940927).   You must link the resulting object file with the libraries:	-lf2c -lm   (in that order)*/#include "f2c.h"/* Subroutine */ int sgemv_(char *trans, integer *m, integer *n, real *alpha, 	real *a, integer *lda, real *x, integer *incx, real *beta, real *y, 	integer *incy){    /* System generated locals */    integer a_dim1, a_offset, i__1, i__2;    /* Local variables */    static integer info;    static real temp;    static integer lenx, leny, i, j;    extern logical lsame_(char *, char *);    static integer ix, iy, jx, jy, kx, ky;    extern /* Subroutine */ int xerbla_(char *, integer *);/*  Purpose       =======       SGEMV  performs one of the matrix-vector operations          y := alpha*A*x + beta*y,   or   y := alpha*A'*x + beta*y,       where alpha and beta are scalars, x and y are vectors and A is an       m by n matrix.       Parameters       ==========       TRANS  - CHARACTER*1.                On entry, TRANS specifies the operation to be performed as                follows:                   TRANS = 'N' or 'n'   y := alpha*A*x + beta*y.                   TRANS = 'T' or 't'   y := alpha*A'*x + beta*y.                   TRANS = 'C' or 'c'   y := alpha*A'*x + beta*y.                Unchanged on exit.       M      - INTEGER.                On entry, M specifies the number of rows of the matrix A.                M must be at least zero.                Unchanged on exit.       N      - INTEGER.                On entry, N specifies the number of columns of the matrix A.                N must be at least zero.                Unchanged on exit.       ALPHA  - REAL            .                On entry, ALPHA specifies the scalar alpha.                Unchanged on exit.       A      - REAL             array of DIMENSION ( LDA, n ).                Before entry, the leading m by n part of the array A must                contain the matrix of coefficients.                Unchanged on exit.       LDA    - INTEGER.                On entry, LDA specifies the first dimension of A as declared                in the calling (sub) program. LDA must be at least                max( 1, m ).                Unchanged on exit.       X      - REAL             array of DIMENSION at least                ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'                and at least                ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.                Before entry, the incremented array X must contain the                vector x.                Unchanged on exit.       INCX   - INTEGER.                On entry, INCX specifies the increment for the elements of                X. INCX must not be zero.                Unchanged on exit.       BETA   - REAL            .                On entry, BETA specifies the scalar beta. When BETA is                supplied as zero then Y need not be set on input.                Unchanged on exit.       Y      - REAL             array of DIMENSION at least                ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'                and at least                ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.                Before entry with BETA non-zero, the incremented array Y                must contain the vector y. On exit, Y is overwritten by the                updated vector y.       INCY   - INTEGER.                On entry, INCY specifies the increment for the elements of                Y. INCY must not be zero.                Unchanged on exit.       Level 2 Blas routine.       -- Written on 22-October-1986.          Jack Dongarra, Argonne National Lab.          Jeremy Du Croz, Nag Central Office.          Sven Hammarling, Nag Central Office.          Richard Hanson, Sandia National Labs.          Test the input parameters.          Parameter adjustments          Function Body */#define X(I) x[(I)-1]#define Y(I) y[(I)-1]#define A(I,J) a[(I)-1 + ((J)-1)* ( *lda)]    info = 0;    if (! lsame_(trans, "N") && ! lsame_(trans, "T") && ! 	    lsame_(trans, "C")) {	info = 1;    } else if (*m < 0) {	info = 2;    } else if (*n < 0) {	info = 3;    } else if (*lda < max(1,*m)) {	info = 6;    } else if (*incx == 0) {	info = 8;    } else if (*incy == 0) {	info = 11;    }    if (info != 0) {	xerbla_("SGEMV ", &info);	return 0;    }/*     Quick return if possible. */    if (*m == 0 || *n == 0 || *alpha == 0.f && *beta == 1.f) {	return 0;    }/*     Set  LENX  and  LENY, the lengths of the vectors x and y, and set          up the start points in  X  and  Y. */    if (lsame_(trans, "N")) {	lenx = *n;	leny = *m;    } else {	lenx = *m;	leny = *n;    }    if (*incx > 0) {	kx = 1;    } else {	kx = 1 - (lenx - 1) * *incx;    }    if (*incy > 0) {	ky = 1;    } else {	ky = 1 - (leny - 1) * *incy;    }/*     Start the operations. In this version the elements of A are          accessed sequentially with one pass through A.          First form  y := beta*y. */    if (*beta != 1.f) {	if (*incy == 1) {	    if (*beta == 0.f) {		i__1 = leny;		for (i = 1; i <= leny; ++i) {		    Y(i) = 0.f;/* L10: */		}	    } else {		i__1 = leny;		for (i = 1; i <= leny; ++i) {		    Y(i) = *beta * Y(i);/* L20: */		}	    }	} else {	    iy = ky;	    if (*beta == 0.f) {		i__1 = leny;		for (i = 1; i <= leny; ++i) {		    Y(iy) = 0.f;		    iy += *incy;/* L30: */		}	    } else {		i__1 = leny;		for (i = 1; i <= leny; ++i) {		    Y(iy) = *beta * Y(iy);		    iy += *incy;/* L40: */		}	    }	}    }    if (*alpha == 0.f) {	return 0;    }    if (lsame_(trans, "N")) {/*        Form  y := alpha*A*x + y. */	jx = kx;	if (*incy == 1) {	    i__1 = *n;	    for (j = 1; j <= *n; ++j) {		if (X(jx) != 0.f) {		    temp = *alpha * X(jx);		    i__2 = *m;		    for (i = 1; i <= *m; ++i) {			Y(i) += temp * A(i,j);/* L50: */		    }		}		jx += *incx;/* L60: */	    }	} else {	    i__1 = *n;	    for (j = 1; j <= *n; ++j) {		if (X(jx) != 0.f) {		    temp = *alpha * X(jx);		    iy = ky;		    i__2 = *m;		    for (i = 1; i <= *m; ++i) {			Y(iy) += temp * A(i,j);			iy += *incy;/* L70: */		    }		}		jx += *incx;/* L80: */	    }	}    } else {/*        Form  y := alpha*A'*x + y. */	jy = ky;	if (*incx == 1) {	    i__1 = *n;	    for (j = 1; j <= *n; ++j) {		temp = 0.f;		i__2 = *m;		for (i = 1; i <= *m; ++i) {		    temp += A(i,j) * X(i);/* L90: */		}		Y(jy) += *alpha * temp;		jy += *incy;/* L100: */	    }	} else {	    i__1 = *n;	    for (j = 1; j <= *n; ++j) {		temp = 0.f;		ix = kx;		i__2 = *m;		for (i = 1; i <= *m; ++i) {		    temp += A(i,j) * X(ix);		    ix += *incx;/* L110: */		}		Y(jy) += *alpha * temp;		jy += *incy;/* L120: */	    }	}    }    return 0;/*     End of SGEMV . */} /* sgemv_ */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -