⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 dsymv.c

📁 SuperLU is a general purpose library for the direct solution of large, sparse, nonsymmetric systems
💻 C
字号:
/*  -- translated by f2c (version 19940927).   You must link the resulting object file with the libraries:	-lf2c -lm   (in that order)*/#include "f2c.h"/* Subroutine */ int dsymv_(char *uplo, integer *n, doublereal *alpha, 	doublereal *a, integer *lda, doublereal *x, integer *incx, doublereal 	*beta, doublereal *y, integer *incy){    /* System generated locals */    integer a_dim1, a_offset, i__1, i__2;    /* Local variables */    static integer info;    static doublereal temp1, temp2;    static integer i, j;    extern logical lsame_(char *, char *);    static integer ix, iy, jx, jy, kx, ky;    extern /* Subroutine */ int xerbla_(char *, integer *);/*  Purpose       =======       DSYMV  performs the matrix-vector  operation          y := alpha*A*x + beta*y,       where alpha and beta are scalars, x and y are n element vectors and       A is an n by n symmetric matrix.       Parameters       ==========       UPLO   - CHARACTER*1.                On entry, UPLO specifies whether the upper or lower                triangular part of the array A is to be referenced as                follows:                   UPLO = 'U' or 'u'   Only the upper triangular part of A                                       is to be referenced.                   UPLO = 'L' or 'l'   Only the lower triangular part of A                                       is to be referenced.                Unchanged on exit.       N      - INTEGER.                On entry, N specifies the order of the matrix A.                N must be at least zero.                Unchanged on exit.       ALPHA  - DOUBLE PRECISION.                On entry, ALPHA specifies the scalar alpha.                Unchanged on exit.       A      - DOUBLE PRECISION array of DIMENSION ( LDA, n ).                Before entry with  UPLO = 'U' or 'u', the leading n by n                upper triangular part of the array A must contain the upper                triangular part of the symmetric matrix and the strictly                lower triangular part of A is not referenced.                Before entry with UPLO = 'L' or 'l', the leading n by n                lower triangular part of the array A must contain the lower                triangular part of the symmetric matrix and the strictly                upper triangular part of A is not referenced.                Unchanged on exit.       LDA    - INTEGER.                On entry, LDA specifies the first dimension of A as declared                in the calling (sub) program. LDA must be at least                max( 1, n ).                Unchanged on exit.       X      - DOUBLE PRECISION array of dimension at least                ( 1 + ( n - 1 )*abs( INCX ) ).                Before entry, the incremented array X must contain the n                element vector x.                Unchanged on exit.       INCX   - INTEGER.                On entry, INCX specifies the increment for the elements of                X. INCX must not be zero.                Unchanged on exit.       BETA   - DOUBLE PRECISION.                On entry, BETA specifies the scalar beta. When BETA is                supplied as zero then Y need not be set on input.                Unchanged on exit.       Y      - DOUBLE PRECISION array of dimension at least                ( 1 + ( n - 1 )*abs( INCY ) ).                Before entry, the incremented array Y must contain the n                element vector y. On exit, Y is overwritten by the updated                vector y.       INCY   - INTEGER.                On entry, INCY specifies the increment for the elements of                Y. INCY must not be zero.                Unchanged on exit.       Level 2 Blas routine.       -- Written on 22-October-1986.          Jack Dongarra, Argonne National Lab.          Jeremy Du Croz, Nag Central Office.          Sven Hammarling, Nag Central Office.          Richard Hanson, Sandia National Labs.          Test the input parameters.          Parameter adjustments          Function Body */#define X(I) x[(I)-1]#define Y(I) y[(I)-1]#define A(I,J) a[(I)-1 + ((J)-1)* ( *lda)]    info = 0;    if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) {	info = 1;    } else if (*n < 0) {	info = 2;    } else if (*lda < max(1,*n)) {	info = 5;    } else if (*incx == 0) {	info = 7;    } else if (*incy == 0) {	info = 10;    }    if (info != 0) {	xerbla_("DSYMV ", &info);	return 0;    }/*     Quick return if possible. */    if (*n == 0 || *alpha == 0. && *beta == 1.) {	return 0;    }/*     Set up the start points in  X  and  Y. */    if (*incx > 0) {	kx = 1;    } else {	kx = 1 - (*n - 1) * *incx;    }    if (*incy > 0) {	ky = 1;    } else {	ky = 1 - (*n - 1) * *incy;    }/*     Start the operations. In this version the elements of A are          accessed sequentially with one pass through the triangular part          of A.          First form  y := beta*y. */    if (*beta != 1.) {	if (*incy == 1) {	    if (*beta == 0.) {		i__1 = *n;		for (i = 1; i <= *n; ++i) {		    Y(i) = 0.;/* L10: */		}	    } else {		i__1 = *n;		for (i = 1; i <= *n; ++i) {		    Y(i) = *beta * Y(i);/* L20: */		}	    }	} else {	    iy = ky;	    if (*beta == 0.) {		i__1 = *n;		for (i = 1; i <= *n; ++i) {		    Y(iy) = 0.;		    iy += *incy;/* L30: */		}	    } else {		i__1 = *n;		for (i = 1; i <= *n; ++i) {		    Y(iy) = *beta * Y(iy);		    iy += *incy;/* L40: */		}	    }	}    }    if (*alpha == 0.) {	return 0;    }    if (lsame_(uplo, "U")) {/*        Form  y  when A is stored in upper triangle. */	if (*incx == 1 && *incy == 1) {	    i__1 = *n;	    for (j = 1; j <= *n; ++j) {		temp1 = *alpha * X(j);		temp2 = 0.;		i__2 = j - 1;		for (i = 1; i <= j-1; ++i) {		    Y(i) += temp1 * A(i,j);		    temp2 += A(i,j) * X(i);/* L50: */		}		Y(j) = Y(j) + temp1 * A(j,j) + *alpha * temp2;/* L60: */	    }	} else {	    jx = kx;	    jy = ky;	    i__1 = *n;	    for (j = 1; j <= *n; ++j) {		temp1 = *alpha * X(jx);		temp2 = 0.;		ix = kx;		iy = ky;		i__2 = j - 1;		for (i = 1; i <= j-1; ++i) {		    Y(iy) += temp1 * A(i,j);		    temp2 += A(i,j) * X(ix);		    ix += *incx;		    iy += *incy;/* L70: */		}		Y(jy) = Y(jy) + temp1 * A(j,j) + *alpha * temp2;		jx += *incx;		jy += *incy;/* L80: */	    }	}    } else {/*        Form  y  when A is stored in lower triangle. */	if (*incx == 1 && *incy == 1) {	    i__1 = *n;	    for (j = 1; j <= *n; ++j) {		temp1 = *alpha * X(j);		temp2 = 0.;		Y(j) += temp1 * A(j,j);		i__2 = *n;		for (i = j + 1; i <= *n; ++i) {		    Y(i) += temp1 * A(i,j);		    temp2 += A(i,j) * X(i);/* L90: */		}		Y(j) += *alpha * temp2;/* L100: */	    }	} else {	    jx = kx;	    jy = ky;	    i__1 = *n;	    for (j = 1; j <= *n; ++j) {		temp1 = *alpha * X(jx);		temp2 = 0.;		Y(jy) += temp1 * A(j,j);		ix = jx;		iy = jy;		i__2 = *n;		for (i = j + 1; i <= *n; ++i) {		    ix += *incx;		    iy += *incy;		    Y(iy) += temp1 * A(i,j);		    temp2 += A(i,j) * X(ix);/* L110: */		}		Y(jy) += *alpha * temp2;		jx += *incx;		jy += *incy;/* L120: */	    }	}    }    return 0;/*     End of DSYMV . */} /* dsymv_ */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -