⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 zgemv.c

📁 SuperLU is a general purpose library for the direct solution of large, sparse, nonsymmetric systems
💻 C
字号:
/*  -- translated by f2c (version 19940927).   You must link the resulting object file with the libraries:	-lf2c -lm   (in that order)*/#include "f2c.h"/* Subroutine */ int zgemv_(char *trans, integer *m, integer *n, 	doublecomplex *alpha, doublecomplex *a, integer *lda, doublecomplex *	x, integer *incx, doublecomplex *beta, doublecomplex *y, integer *	incy){    /* System generated locals */    integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;    doublecomplex z__1, z__2, z__3;    /* Builtin functions */    void d_cnjg(doublecomplex *, doublecomplex *);    /* Local variables */    static integer info;    static doublecomplex temp;    static integer lenx, leny, i, j;    extern logical lsame_(char *, char *);    static integer ix, iy, jx, jy, kx, ky;    extern /* Subroutine */ int xerbla_(char *, integer *);    static logical noconj;/*  Purpose       =======       ZGEMV  performs one of the matrix-vector operations          y := alpha*A*x + beta*y,   or   y := alpha*A'*x + beta*y,   or          y := alpha*conjg( A' )*x + beta*y,       where alpha and beta are scalars, x and y are vectors and A is an       m by n matrix.       Parameters       ==========       TRANS  - CHARACTER*1.                On entry, TRANS specifies the operation to be performed as                follows:                   TRANS = 'N' or 'n'   y := alpha*A*x + beta*y.                   TRANS = 'T' or 't'   y := alpha*A'*x + beta*y.                   TRANS = 'C' or 'c'   y := alpha*conjg( A' )*x + beta*y.                Unchanged on exit.       M      - INTEGER.                On entry, M specifies the number of rows of the matrix A.                M must be at least zero.                Unchanged on exit.       N      - INTEGER.                On entry, N specifies the number of columns of the matrix A.                N must be at least zero.                Unchanged on exit.       ALPHA  - COMPLEX*16      .                On entry, ALPHA specifies the scalar alpha.                Unchanged on exit.       A      - COMPLEX*16       array of DIMENSION ( LDA, n ).                Before entry, the leading m by n part of the array A must                contain the matrix of coefficients.                Unchanged on exit.       LDA    - INTEGER.                On entry, LDA specifies the first dimension of A as declared                in the calling (sub) program. LDA must be at least                max( 1, m ).                Unchanged on exit.       X      - COMPLEX*16       array of DIMENSION at least                ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'                and at least                ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.                Before entry, the incremented array X must contain the                vector x.                Unchanged on exit.       INCX   - INTEGER.                On entry, INCX specifies the increment for the elements of                X. INCX must not be zero.                Unchanged on exit.       BETA   - COMPLEX*16      .                On entry, BETA specifies the scalar beta. When BETA is                supplied as zero then Y need not be set on input.                Unchanged on exit.       Y      - COMPLEX*16       array of DIMENSION at least                ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'                and at least                ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.                Before entry with BETA non-zero, the incremented array Y                must contain the vector y. On exit, Y is overwritten by the                updated vector y.       INCY   - INTEGER.                On entry, INCY specifies the increment for the elements of                Y. INCY must not be zero.                Unchanged on exit.       Level 2 Blas routine.       -- Written on 22-October-1986.          Jack Dongarra, Argonne National Lab.          Jeremy Du Croz, Nag Central Office.          Sven Hammarling, Nag Central Office.          Richard Hanson, Sandia National Labs.          Test the input parameters.          Parameter adjustments          Function Body */#define X(I) x[(I)-1]#define Y(I) y[(I)-1]#define A(I,J) a[(I)-1 + ((J)-1)* ( *lda)]    info = 0;    if (! lsame_(trans, "N") && ! lsame_(trans, "T") && ! 	    lsame_(trans, "C")) {	info = 1;    } else if (*m < 0) {	info = 2;    } else if (*n < 0) {	info = 3;    } else if (*lda < max(1,*m)) {	info = 6;    } else if (*incx == 0) {	info = 8;    } else if (*incy == 0) {	info = 11;    }    if (info != 0) {	xerbla_("ZGEMV ", &info);	return 0;    }/*     Quick return if possible. */    if (*m == 0 || *n == 0 || alpha->r == 0. && alpha->i == 0. && (beta->r == 	    1. && beta->i == 0.)) {	return 0;    }    noconj = lsame_(trans, "T");/*     Set  LENX  and  LENY, the lengths of the vectors x and y, and set          up the start points in  X  and  Y. */    if (lsame_(trans, "N")) {	lenx = *n;	leny = *m;    } else {	lenx = *m;	leny = *n;    }    if (*incx > 0) {	kx = 1;    } else {	kx = 1 - (lenx - 1) * *incx;    }    if (*incy > 0) {	ky = 1;    } else {	ky = 1 - (leny - 1) * *incy;    }/*     Start the operations. In this version the elements of A are          accessed sequentially with one pass through A.          First form  y := beta*y. */    if (beta->r != 1. || beta->i != 0.) {	if (*incy == 1) {	    if (beta->r == 0. && beta->i == 0.) {		i__1 = leny;		for (i = 1; i <= leny; ++i) {		    i__2 = i;		    Y(i).r = 0., Y(i).i = 0.;/* L10: */		}	    } else {		i__1 = leny;		for (i = 1; i <= leny; ++i) {		    i__2 = i;		    i__3 = i;		    z__1.r = beta->r * Y(i).r - beta->i * Y(i).i, 			    z__1.i = beta->r * Y(i).i + beta->i * Y(i)			    .r;		    Y(i).r = z__1.r, Y(i).i = z__1.i;/* L20: */		}	    }	} else {	    iy = ky;	    if (beta->r == 0. && beta->i == 0.) {		i__1 = leny;		for (i = 1; i <= leny; ++i) {		    i__2 = iy;		    Y(iy).r = 0., Y(iy).i = 0.;		    iy += *incy;/* L30: */		}	    } else {		i__1 = leny;		for (i = 1; i <= leny; ++i) {		    i__2 = iy;		    i__3 = iy;		    z__1.r = beta->r * Y(iy).r - beta->i * Y(iy).i, 			    z__1.i = beta->r * Y(iy).i + beta->i * Y(iy)			    .r;		    Y(iy).r = z__1.r, Y(iy).i = z__1.i;		    iy += *incy;/* L40: */		}	    }	}    }    if (alpha->r == 0. && alpha->i == 0.) {	return 0;    }    if (lsame_(trans, "N")) {/*        Form  y := alpha*A*x + y. */	jx = kx;	if (*incy == 1) {	    i__1 = *n;	    for (j = 1; j <= *n; ++j) {		i__2 = jx;		if (X(jx).r != 0. || X(jx).i != 0.) {		    i__2 = jx;		    z__1.r = alpha->r * X(jx).r - alpha->i * X(jx).i, 			    z__1.i = alpha->r * X(jx).i + alpha->i * X(jx)			    .r;		    temp.r = z__1.r, temp.i = z__1.i;		    i__2 = *m;		    for (i = 1; i <= *m; ++i) {			i__3 = i;			i__4 = i;			i__5 = i + j * a_dim1;			z__2.r = temp.r * A(i,j).r - temp.i * A(i,j).i, 				z__2.i = temp.r * A(i,j).i + temp.i * A(i,j)				.r;			z__1.r = Y(i).r + z__2.r, z__1.i = Y(i).i + 				z__2.i;			Y(i).r = z__1.r, Y(i).i = z__1.i;/* L50: */		    }		}		jx += *incx;/* L60: */	    }	} else {	    i__1 = *n;	    for (j = 1; j <= *n; ++j) {		i__2 = jx;		if (X(jx).r != 0. || X(jx).i != 0.) {		    i__2 = jx;		    z__1.r = alpha->r * X(jx).r - alpha->i * X(jx).i, 			    z__1.i = alpha->r * X(jx).i + alpha->i * X(jx)			    .r;		    temp.r = z__1.r, temp.i = z__1.i;		    iy = ky;		    i__2 = *m;		    for (i = 1; i <= *m; ++i) {			i__3 = iy;			i__4 = iy;			i__5 = i + j * a_dim1;			z__2.r = temp.r * A(i,j).r - temp.i * A(i,j).i, 				z__2.i = temp.r * A(i,j).i + temp.i * A(i,j)				.r;			z__1.r = Y(iy).r + z__2.r, z__1.i = Y(iy).i + 				z__2.i;			Y(iy).r = z__1.r, Y(iy).i = z__1.i;			iy += *incy;/* L70: */		    }		}		jx += *incx;/* L80: */	    }	}    } else {/*        Form  y := alpha*A'*x + y  or  y := alpha*conjg( A' )*x + y. */	jy = ky;	if (*incx == 1) {	    i__1 = *n;	    for (j = 1; j <= *n; ++j) {		temp.r = 0., temp.i = 0.;		if (noconj) {		    i__2 = *m;		    for (i = 1; i <= *m; ++i) {			i__3 = i + j * a_dim1;			i__4 = i;			z__2.r = A(i,j).r * X(i).r - A(i,j).i * X(i)				.i, z__2.i = A(i,j).r * X(i).i + A(i,j)				.i * X(i).r;			z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i;			temp.r = z__1.r, temp.i = z__1.i;/* L90: */		    }		} else {		    i__2 = *m;		    for (i = 1; i <= *m; ++i) {			d_cnjg(&z__3, &A(i,j));			i__3 = i;			z__2.r = z__3.r * X(i).r - z__3.i * X(i).i, 				z__2.i = z__3.r * X(i).i + z__3.i * X(i)				.r;			z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i;			temp.r = z__1.r, temp.i = z__1.i;/* L100: */		    }		}		i__2 = jy;		i__3 = jy;		z__2.r = alpha->r * temp.r - alpha->i * temp.i, z__2.i = 			alpha->r * temp.i + alpha->i * temp.r;		z__1.r = Y(jy).r + z__2.r, z__1.i = Y(jy).i + z__2.i;		Y(jy).r = z__1.r, Y(jy).i = z__1.i;		jy += *incy;/* L110: */	    }	} else {	    i__1 = *n;	    for (j = 1; j <= *n; ++j) {		temp.r = 0., temp.i = 0.;		ix = kx;		if (noconj) {		    i__2 = *m;		    for (i = 1; i <= *m; ++i) {			i__3 = i + j * a_dim1;			i__4 = ix;			z__2.r = A(i,j).r * X(ix).r - A(i,j).i * X(ix)				.i, z__2.i = A(i,j).r * X(ix).i + A(i,j)				.i * X(ix).r;			z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i;			temp.r = z__1.r, temp.i = z__1.i;			ix += *incx;/* L120: */		    }		} else {		    i__2 = *m;		    for (i = 1; i <= *m; ++i) {			d_cnjg(&z__3, &A(i,j));			i__3 = ix;			z__2.r = z__3.r * X(ix).r - z__3.i * X(ix).i, 				z__2.i = z__3.r * X(ix).i + z__3.i * X(ix)				.r;			z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i;			temp.r = z__1.r, temp.i = z__1.i;			ix += *incx;/* L130: */		    }		}		i__2 = jy;		i__3 = jy;		z__2.r = alpha->r * temp.r - alpha->i * temp.i, z__2.i = 			alpha->r * temp.i + alpha->i * temp.r;		z__1.r = Y(jy).r + z__2.r, z__1.i = Y(jy).i + z__2.i;		Y(jy).r = z__1.r, Y(jy).i = z__1.i;		jy += *incy;/* L140: */	    }	}    }    return 0;/*     End of ZGEMV . */} /* zgemv_ */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -