⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 zhemv.c

📁 SuperLU is a general purpose library for the direct solution of large, sparse, nonsymmetric systems
💻 C
字号:
/*  -- translated by f2c (version 19940927).   You must link the resulting object file with the libraries:	-lf2c -lm   (in that order)*/#include "f2c.h"/* Subroutine */ int zhemv_(char *uplo, integer *n, doublecomplex *alpha, 	doublecomplex *a, integer *lda, doublecomplex *x, integer *incx, 	doublecomplex *beta, doublecomplex *y, integer *incy){    /* System generated locals */    integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;    doublereal d__1;    doublecomplex z__1, z__2, z__3, z__4;    /* Builtin functions */    void d_cnjg(doublecomplex *, doublecomplex *);    /* Local variables */    static integer info;    static doublecomplex temp1, temp2;    static integer i, j;    extern logical lsame_(char *, char *);    static integer ix, iy, jx, jy, kx, ky;    extern /* Subroutine */ int xerbla_(char *, integer *);/*  Purpose       =======       ZHEMV  performs the matrix-vector  operation          y := alpha*A*x + beta*y,       where alpha and beta are scalars, x and y are n element vectors and       A is an n by n hermitian matrix.       Parameters       ==========       UPLO   - CHARACTER*1.                On entry, UPLO specifies whether the upper or lower                triangular part of the array A is to be referenced as                follows:                   UPLO = 'U' or 'u'   Only the upper triangular part of A                                       is to be referenced.                   UPLO = 'L' or 'l'   Only the lower triangular part of A                                       is to be referenced.                Unchanged on exit.       N      - INTEGER.                On entry, N specifies the order of the matrix A.                N must be at least zero.                Unchanged on exit.       ALPHA  - COMPLEX*16      .                On entry, ALPHA specifies the scalar alpha.                Unchanged on exit.       A      - COMPLEX*16       array of DIMENSION ( LDA, n ).                Before entry with  UPLO = 'U' or 'u', the leading n by n                upper triangular part of the array A must contain the upper                triangular part of the hermitian matrix and the strictly                lower triangular part of A is not referenced.                Before entry with UPLO = 'L' or 'l', the leading n by n                lower triangular part of the array A must contain the lower                triangular part of the hermitian matrix and the strictly                upper triangular part of A is not referenced.                Note that the imaginary parts of the diagonal elements need                not be set and are assumed to be zero.                Unchanged on exit.       LDA    - INTEGER.                On entry, LDA specifies the first dimension of A as declared                in the calling (sub) program. LDA must be at least                max( 1, n ).                Unchanged on exit.       X      - COMPLEX*16       array of dimension at least                ( 1 + ( n - 1 )*abs( INCX ) ).                Before entry, the incremented array X must contain the n                element vector x.                Unchanged on exit.       INCX   - INTEGER.                On entry, INCX specifies the increment for the elements of                X. INCX must not be zero.                Unchanged on exit.       BETA   - COMPLEX*16      .                On entry, BETA specifies the scalar beta. When BETA is                supplied as zero then Y need not be set on input.                Unchanged on exit.       Y      - COMPLEX*16       array of dimension at least                ( 1 + ( n - 1 )*abs( INCY ) ).                Before entry, the incremented array Y must contain the n                element vector y. On exit, Y is overwritten by the updated                vector y.       INCY   - INTEGER.                On entry, INCY specifies the increment for the elements of                Y. INCY must not be zero.                Unchanged on exit.       Level 2 Blas routine.       -- Written on 22-October-1986.          Jack Dongarra, Argonne National Lab.          Jeremy Du Croz, Nag Central Office.          Sven Hammarling, Nag Central Office.          Richard Hanson, Sandia National Labs.          Test the input parameters.          Parameter adjustments          Function Body */#define X(I) x[(I)-1]#define Y(I) y[(I)-1]#define A(I,J) a[(I)-1 + ((J)-1)* ( *lda)]    info = 0;    if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) {	info = 1;    } else if (*n < 0) {	info = 2;    } else if (*lda < max(1,*n)) {	info = 5;    } else if (*incx == 0) {	info = 7;    } else if (*incy == 0) {	info = 10;    }    if (info != 0) {	xerbla_("ZHEMV ", &info);	return 0;    }/*     Quick return if possible. */    if (*n == 0 || alpha->r == 0. && alpha->i == 0. && (beta->r == 1. && 	    beta->i == 0.)) {	return 0;    }/*     Set up the start points in  X  and  Y. */    if (*incx > 0) {	kx = 1;    } else {	kx = 1 - (*n - 1) * *incx;    }    if (*incy > 0) {	ky = 1;    } else {	ky = 1 - (*n - 1) * *incy;    }/*     Start the operations. In this version the elements of A are          accessed sequentially with one pass through the triangular part          of A.          First form  y := beta*y. */    if (beta->r != 1. || beta->i != 0.) {	if (*incy == 1) {	    if (beta->r == 0. && beta->i == 0.) {		i__1 = *n;		for (i = 1; i <= *n; ++i) {		    i__2 = i;		    Y(i).r = 0., Y(i).i = 0.;/* L10: */		}	    } else {		i__1 = *n;		for (i = 1; i <= *n; ++i) {		    i__2 = i;		    i__3 = i;		    z__1.r = beta->r * Y(i).r - beta->i * Y(i).i, 			    z__1.i = beta->r * Y(i).i + beta->i * Y(i)			    .r;		    Y(i).r = z__1.r, Y(i).i = z__1.i;/* L20: */		}	    }	} else {	    iy = ky;	    if (beta->r == 0. && beta->i == 0.) {		i__1 = *n;		for (i = 1; i <= *n; ++i) {		    i__2 = iy;		    Y(iy).r = 0., Y(iy).i = 0.;		    iy += *incy;/* L30: */		}	    } else {		i__1 = *n;		for (i = 1; i <= *n; ++i) {		    i__2 = iy;		    i__3 = iy;		    z__1.r = beta->r * Y(iy).r - beta->i * Y(iy).i, 			    z__1.i = beta->r * Y(iy).i + beta->i * Y(iy)			    .r;		    Y(iy).r = z__1.r, Y(iy).i = z__1.i;		    iy += *incy;/* L40: */		}	    }	}    }    if (alpha->r == 0. && alpha->i == 0.) {	return 0;    }    if (lsame_(uplo, "U")) {/*        Form  y  when A is stored in upper triangle. */	if (*incx == 1 && *incy == 1) {	    i__1 = *n;	    for (j = 1; j <= *n; ++j) {		i__2 = j;		z__1.r = alpha->r * X(j).r - alpha->i * X(j).i, z__1.i =			 alpha->r * X(j).i + alpha->i * X(j).r;		temp1.r = z__1.r, temp1.i = z__1.i;		temp2.r = 0., temp2.i = 0.;		i__2 = j - 1;		for (i = 1; i <= j-1; ++i) {		    i__3 = i;		    i__4 = i;		    i__5 = i + j * a_dim1;		    z__2.r = temp1.r * A(i,j).r - temp1.i * A(i,j).i, 			    z__2.i = temp1.r * A(i,j).i + temp1.i * A(i,j)			    .r;		    z__1.r = Y(i).r + z__2.r, z__1.i = Y(i).i + z__2.i;		    Y(i).r = z__1.r, Y(i).i = z__1.i;		    d_cnjg(&z__3, &A(i,j));		    i__3 = i;		    z__2.r = z__3.r * X(i).r - z__3.i * X(i).i, z__2.i =			     z__3.r * X(i).i + z__3.i * X(i).r;		    z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;		    temp2.r = z__1.r, temp2.i = z__1.i;/* L50: */		}		i__2 = j;		i__3 = j;		i__4 = j + j * a_dim1;		d__1 = A(j,j).r;		z__3.r = d__1 * temp1.r, z__3.i = d__1 * temp1.i;		z__2.r = Y(j).r + z__3.r, z__2.i = Y(j).i + z__3.i;		z__4.r = alpha->r * temp2.r - alpha->i * temp2.i, z__4.i = 			alpha->r * temp2.i + alpha->i * temp2.r;		z__1.r = z__2.r + z__4.r, z__1.i = z__2.i + z__4.i;		Y(j).r = z__1.r, Y(j).i = z__1.i;/* L60: */	    }	} else {	    jx = kx;	    jy = ky;	    i__1 = *n;	    for (j = 1; j <= *n; ++j) {		i__2 = jx;		z__1.r = alpha->r * X(jx).r - alpha->i * X(jx).i, z__1.i =			 alpha->r * X(jx).i + alpha->i * X(jx).r;		temp1.r = z__1.r, temp1.i = z__1.i;		temp2.r = 0., temp2.i = 0.;		ix = kx;		iy = ky;		i__2 = j - 1;		for (i = 1; i <= j-1; ++i) {		    i__3 = iy;		    i__4 = iy;		    i__5 = i + j * a_dim1;		    z__2.r = temp1.r * A(i,j).r - temp1.i * A(i,j).i, 			    z__2.i = temp1.r * A(i,j).i + temp1.i * A(i,j)			    .r;		    z__1.r = Y(iy).r + z__2.r, z__1.i = Y(iy).i + z__2.i;		    Y(iy).r = z__1.r, Y(iy).i = z__1.i;		    d_cnjg(&z__3, &A(i,j));		    i__3 = ix;		    z__2.r = z__3.r * X(ix).r - z__3.i * X(ix).i, z__2.i =			     z__3.r * X(ix).i + z__3.i * X(ix).r;		    z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;		    temp2.r = z__1.r, temp2.i = z__1.i;		    ix += *incx;		    iy += *incy;/* L70: */		}		i__2 = jy;		i__3 = jy;		i__4 = j + j * a_dim1;		d__1 = A(j,j).r;		z__3.r = d__1 * temp1.r, z__3.i = d__1 * temp1.i;		z__2.r = Y(jy).r + z__3.r, z__2.i = Y(jy).i + z__3.i;		z__4.r = alpha->r * temp2.r - alpha->i * temp2.i, z__4.i = 			alpha->r * temp2.i + alpha->i * temp2.r;		z__1.r = z__2.r + z__4.r, z__1.i = z__2.i + z__4.i;		Y(jy).r = z__1.r, Y(jy).i = z__1.i;		jx += *incx;		jy += *incy;/* L80: */	    }	}    } else {/*        Form  y  when A is stored in lower triangle. */	if (*incx == 1 && *incy == 1) {	    i__1 = *n;	    for (j = 1; j <= *n; ++j) {		i__2 = j;		z__1.r = alpha->r * X(j).r - alpha->i * X(j).i, z__1.i =			 alpha->r * X(j).i + alpha->i * X(j).r;		temp1.r = z__1.r, temp1.i = z__1.i;		temp2.r = 0., temp2.i = 0.;		i__2 = j;		i__3 = j;		i__4 = j + j * a_dim1;		d__1 = A(j,j).r;		z__2.r = d__1 * temp1.r, z__2.i = d__1 * temp1.i;		z__1.r = Y(j).r + z__2.r, z__1.i = Y(j).i + z__2.i;		Y(j).r = z__1.r, Y(j).i = z__1.i;		i__2 = *n;		for (i = j + 1; i <= *n; ++i) {		    i__3 = i;		    i__4 = i;		    i__5 = i + j * a_dim1;		    z__2.r = temp1.r * A(i,j).r - temp1.i * A(i,j).i, 			    z__2.i = temp1.r * A(i,j).i + temp1.i * A(i,j)			    .r;		    z__1.r = Y(i).r + z__2.r, z__1.i = Y(i).i + z__2.i;		    Y(i).r = z__1.r, Y(i).i = z__1.i;		    d_cnjg(&z__3, &A(i,j));		    i__3 = i;		    z__2.r = z__3.r * X(i).r - z__3.i * X(i).i, z__2.i =			     z__3.r * X(i).i + z__3.i * X(i).r;		    z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;		    temp2.r = z__1.r, temp2.i = z__1.i;/* L90: */		}		i__2 = j;		i__3 = j;		z__2.r = alpha->r * temp2.r - alpha->i * temp2.i, z__2.i = 			alpha->r * temp2.i + alpha->i * temp2.r;		z__1.r = Y(j).r + z__2.r, z__1.i = Y(j).i + z__2.i;		Y(j).r = z__1.r, Y(j).i = z__1.i;/* L100: */	    }	} else {	    jx = kx;	    jy = ky;	    i__1 = *n;	    for (j = 1; j <= *n; ++j) {		i__2 = jx;		z__1.r = alpha->r * X(jx).r - alpha->i * X(jx).i, z__1.i =			 alpha->r * X(jx).i + alpha->i * X(jx).r;		temp1.r = z__1.r, temp1.i = z__1.i;		temp2.r = 0., temp2.i = 0.;		i__2 = jy;		i__3 = jy;		i__4 = j + j * a_dim1;		d__1 = A(j,j).r;		z__2.r = d__1 * temp1.r, z__2.i = d__1 * temp1.i;		z__1.r = Y(jy).r + z__2.r, z__1.i = Y(jy).i + z__2.i;		Y(jy).r = z__1.r, Y(jy).i = z__1.i;		ix = jx;		iy = jy;		i__2 = *n;		for (i = j + 1; i <= *n; ++i) {		    ix += *incx;		    iy += *incy;		    i__3 = iy;		    i__4 = iy;		    i__5 = i + j * a_dim1;		    z__2.r = temp1.r * A(i,j).r - temp1.i * A(i,j).i, 			    z__2.i = temp1.r * A(i,j).i + temp1.i * A(i,j)			    .r;		    z__1.r = Y(iy).r + z__2.r, z__1.i = Y(iy).i + z__2.i;		    Y(iy).r = z__1.r, Y(iy).i = z__1.i;		    d_cnjg(&z__3, &A(i,j));		    i__3 = ix;		    z__2.r = z__3.r * X(ix).r - z__3.i * X(ix).i, z__2.i =			     z__3.r * X(ix).i + z__3.i * X(ix).r;		    z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;		    temp2.r = z__1.r, temp2.i = z__1.i;/* L110: */		}		i__2 = jy;		i__3 = jy;		z__2.r = alpha->r * temp2.r - alpha->i * temp2.i, z__2.i = 			alpha->r * temp2.i + alpha->i * temp2.r;		z__1.r = Y(jy).r + z__2.r, z__1.i = Y(jy).i + z__2.i;		Y(jy).r = z__1.r, Y(jy).i = z__1.i;		jx += *incx;		jy += *incy;/* L120: */	    }	}    }    return 0;/*     End of ZHEMV . */} /* zhemv_ */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -