⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ztrsv.c

📁 SuperLU is a general purpose library for the direct solution of large, sparse, nonsymmetric systems
💻 C
字号:
/*  -- translated by f2c (version 19940927).   You must link the resulting object file with the libraries:	-lf2c -lm   (in that order)*/#include "f2c.h"/* Subroutine */ int ztrsv_(char *uplo, char *trans, char *diag, integer *n, 	doublecomplex *a, integer *lda, doublecomplex *x, integer *incx){    /* System generated locals */    integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;    doublecomplex z__1, z__2, z__3;    /* Builtin functions */    void z_div(doublecomplex *, doublecomplex *, doublecomplex *), d_cnjg(	    doublecomplex *, doublecomplex *);    /* Local variables */    static integer info;    static doublecomplex temp;    static integer i, j;    extern logical lsame_(char *, char *);    static integer ix, jx, kx;    extern /* Subroutine */ int xerbla_(char *, integer *);    static logical noconj, nounit;/*  Purpose       =======       ZTRSV  solves one of the systems of equations          A*x = b,   or   A'*x = b,   or   conjg( A' )*x = b,       where b and x are n element vectors and A is an n by n unit, or       non-unit, upper or lower triangular matrix.       No test for singularity or near-singularity is included in this       routine. Such tests must be performed before calling this routine.       Parameters       ==========       UPLO   - CHARACTER*1.                On entry, UPLO specifies whether the matrix is an upper or                lower triangular matrix as follows:                   UPLO = 'U' or 'u'   A is an upper triangular matrix.                   UPLO = 'L' or 'l'   A is a lower triangular matrix.                Unchanged on exit.       TRANS  - CHARACTER*1.                On entry, TRANS specifies the equations to be solved as                follows:                   TRANS = 'N' or 'n'   A*x = b.                   TRANS = 'T' or 't'   A'*x = b.                   TRANS = 'C' or 'c'   conjg( A' )*x = b.                Unchanged on exit.       DIAG   - CHARACTER*1.                On entry, DIAG specifies whether or not A is unit                triangular as follows:                   DIAG = 'U' or 'u'   A is assumed to be unit triangular.                   DIAG = 'N' or 'n'   A is not assumed to be unit                                       triangular.                Unchanged on exit.       N      - INTEGER.                On entry, N specifies the order of the matrix A.                N must be at least zero.                Unchanged on exit.       A      - COMPLEX*16       array of DIMENSION ( LDA, n ).                Before entry with  UPLO = 'U' or 'u', the leading n by n                upper triangular part of the array A must contain the upper                triangular matrix and the strictly lower triangular part of                A is not referenced.                Before entry with UPLO = 'L' or 'l', the leading n by n                lower triangular part of the array A must contain the lower                triangular matrix and the strictly upper triangular part of                A is not referenced.                Note that when  DIAG = 'U' or 'u', the diagonal elements of                A are not referenced either, but are assumed to be unity.                Unchanged on exit.       LDA    - INTEGER.                On entry, LDA specifies the first dimension of A as declared                in the calling (sub) program. LDA must be at least                max( 1, n ).                Unchanged on exit.       X      - COMPLEX*16       array of dimension at least                ( 1 + ( n - 1 )*abs( INCX ) ).                Before entry, the incremented array X must contain the n                element right-hand side vector b. On exit, X is overwritten                with the solution vector x.       INCX   - INTEGER.                On entry, INCX specifies the increment for the elements of                X. INCX must not be zero.                Unchanged on exit.       Level 2 Blas routine.       -- Written on 22-October-1986.          Jack Dongarra, Argonne National Lab.          Jeremy Du Croz, Nag Central Office.          Sven Hammarling, Nag Central Office.          Richard Hanson, Sandia National Labs.          Test the input parameters.          Parameter adjustments          Function Body */#define X(I) x[(I)-1]#define A(I,J) a[(I)-1 + ((J)-1)* ( *lda)]    info = 0;    if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) {	info = 1;    } else if (! lsame_(trans, "N") && ! lsame_(trans, "T") &&	     ! lsame_(trans, "C")) {	info = 2;    } else if (! lsame_(diag, "U") && ! lsame_(diag, "N")) {	info = 3;    } else if (*n < 0) {	info = 4;    } else if (*lda < max(1,*n)) {	info = 6;    } else if (*incx == 0) {	info = 8;    }    if (info != 0) {	xerbla_("ZTRSV ", &info);	return 0;    }/*     Quick return if possible. */    if (*n == 0) {	return 0;    }    noconj = lsame_(trans, "T");    nounit = lsame_(diag, "N");/*     Set up the start point in X if the increment is not unity. This          will be  ( N - 1 )*INCX  too small for descending loops. */    if (*incx <= 0) {	kx = 1 - (*n - 1) * *incx;    } else if (*incx != 1) {	kx = 1;    }/*     Start the operations. In this version the elements of A are          accessed sequentially with one pass through A. */    if (lsame_(trans, "N")) {/*        Form  x := inv( A )*x. */	if (lsame_(uplo, "U")) {	    if (*incx == 1) {		for (j = *n; j >= 1; --j) {		    i__1 = j;		    if (X(j).r != 0. || X(j).i != 0.) {			if (nounit) {			    i__1 = j;			    z_div(&z__1, &X(j), &A(j,j));			    X(j).r = z__1.r, X(j).i = z__1.i;			}			i__1 = j;			temp.r = X(j).r, temp.i = X(j).i;			for (i = j - 1; i >= 1; --i) {			    i__1 = i;			    i__2 = i;			    i__3 = i + j * a_dim1;			    z__2.r = temp.r * A(i,j).r - temp.i * A(i,j).i, 				    z__2.i = temp.r * A(i,j).i + temp.i * A(i,j).r;			    z__1.r = X(i).r - z__2.r, z__1.i = X(i).i - 				    z__2.i;			    X(i).r = z__1.r, X(i).i = z__1.i;/* L10: */			}		    }/* L20: */		}	    } else {		jx = kx + (*n - 1) * *incx;		for (j = *n; j >= 1; --j) {		    i__1 = jx;		    if (X(jx).r != 0. || X(jx).i != 0.) {			if (nounit) {			    i__1 = jx;			    z_div(&z__1, &X(jx), &A(j,j));			    X(jx).r = z__1.r, X(jx).i = z__1.i;			}			i__1 = jx;			temp.r = X(jx).r, temp.i = X(jx).i;			ix = jx;			for (i = j - 1; i >= 1; --i) {			    ix -= *incx;			    i__1 = ix;			    i__2 = ix;			    i__3 = i + j * a_dim1;			    z__2.r = temp.r * A(i,j).r - temp.i * A(i,j).i, 				    z__2.i = temp.r * A(i,j).i + temp.i * A(i,j).r;			    z__1.r = X(ix).r - z__2.r, z__1.i = X(ix).i - 				    z__2.i;			    X(ix).r = z__1.r, X(ix).i = z__1.i;/* L30: */			}		    }		    jx -= *incx;/* L40: */		}	    }	} else {	    if (*incx == 1) {		i__1 = *n;		for (j = 1; j <= *n; ++j) {		    i__2 = j;		    if (X(j).r != 0. || X(j).i != 0.) {			if (nounit) {			    i__2 = j;			    z_div(&z__1, &X(j), &A(j,j));			    X(j).r = z__1.r, X(j).i = z__1.i;			}			i__2 = j;			temp.r = X(j).r, temp.i = X(j).i;			i__2 = *n;			for (i = j + 1; i <= *n; ++i) {			    i__3 = i;			    i__4 = i;			    i__5 = i + j * a_dim1;			    z__2.r = temp.r * A(i,j).r - temp.i * A(i,j).i, 				    z__2.i = temp.r * A(i,j).i + temp.i * A(i,j).r;			    z__1.r = X(i).r - z__2.r, z__1.i = X(i).i - 				    z__2.i;			    X(i).r = z__1.r, X(i).i = z__1.i;/* L50: */			}		    }/* L60: */		}	    } else {		jx = kx;		i__1 = *n;		for (j = 1; j <= *n; ++j) {		    i__2 = jx;		    if (X(jx).r != 0. || X(jx).i != 0.) {			if (nounit) {			    i__2 = jx;			    z_div(&z__1, &X(jx), &A(j,j));			    X(jx).r = z__1.r, X(jx).i = z__1.i;			}			i__2 = jx;			temp.r = X(jx).r, temp.i = X(jx).i;			ix = jx;			i__2 = *n;			for (i = j + 1; i <= *n; ++i) {			    ix += *incx;			    i__3 = ix;			    i__4 = ix;			    i__5 = i + j * a_dim1;			    z__2.r = temp.r * A(i,j).r - temp.i * A(i,j).i, 				    z__2.i = temp.r * A(i,j).i + temp.i * A(i,j).r;			    z__1.r = X(ix).r - z__2.r, z__1.i = X(ix).i - 				    z__2.i;			    X(ix).r = z__1.r, X(ix).i = z__1.i;/* L70: */			}		    }		    jx += *incx;/* L80: */		}	    }	}    } else {/*        Form  x := inv( A' )*x  or  x := inv( conjg( A' ) )*x. */	if (lsame_(uplo, "U")) {	    if (*incx == 1) {		i__1 = *n;		for (j = 1; j <= *n; ++j) {		    i__2 = j;		    temp.r = X(j).r, temp.i = X(j).i;		    if (noconj) {			i__2 = j - 1;			for (i = 1; i <= j-1; ++i) {			    i__3 = i + j * a_dim1;			    i__4 = i;			    z__2.r = A(i,j).r * X(i).r - A(i,j).i * X(				    i).i, z__2.i = A(i,j).r * X(i).i + 				    A(i,j).i * X(i).r;			    z__1.r = temp.r - z__2.r, z__1.i = temp.i - 				    z__2.i;			    temp.r = z__1.r, temp.i = z__1.i;/* L90: */			}			if (nounit) {			    z_div(&z__1, &temp, &A(j,j));			    temp.r = z__1.r, temp.i = z__1.i;			}		    } else {			i__2 = j - 1;			for (i = 1; i <= j-1; ++i) {			    d_cnjg(&z__3, &A(i,j));			    i__3 = i;			    z__2.r = z__3.r * X(i).r - z__3.i * X(i).i, 				    z__2.i = z__3.r * X(i).i + z__3.i * X(				    i).r;			    z__1.r = temp.r - z__2.r, z__1.i = temp.i - 				    z__2.i;			    temp.r = z__1.r, temp.i = z__1.i;/* L100: */			}			if (nounit) {			    d_cnjg(&z__2, &A(j,j));			    z_div(&z__1, &temp, &z__2);			    temp.r = z__1.r, temp.i = z__1.i;			}		    }		    i__2 = j;		    X(j).r = temp.r, X(j).i = temp.i;/* L110: */		}	    } else {		jx = kx;		i__1 = *n;		for (j = 1; j <= *n; ++j) {		    ix = kx;		    i__2 = jx;		    temp.r = X(jx).r, temp.i = X(jx).i;		    if (noconj) {			i__2 = j - 1;			for (i = 1; i <= j-1; ++i) {			    i__3 = i + j * a_dim1;			    i__4 = ix;			    z__2.r = A(i,j).r * X(ix).r - A(i,j).i * X(				    ix).i, z__2.i = A(i,j).r * X(ix).i + 				    A(i,j).i * X(ix).r;			    z__1.r = temp.r - z__2.r, z__1.i = temp.i - 				    z__2.i;			    temp.r = z__1.r, temp.i = z__1.i;			    ix += *incx;/* L120: */			}			if (nounit) {			    z_div(&z__1, &temp, &A(j,j));			    temp.r = z__1.r, temp.i = z__1.i;			}		    } else {			i__2 = j - 1;			for (i = 1; i <= j-1; ++i) {			    d_cnjg(&z__3, &A(i,j));			    i__3 = ix;			    z__2.r = z__3.r * X(ix).r - z__3.i * X(ix).i, 				    z__2.i = z__3.r * X(ix).i + z__3.i * X(				    ix).r;			    z__1.r = temp.r - z__2.r, z__1.i = temp.i - 				    z__2.i;			    temp.r = z__1.r, temp.i = z__1.i;			    ix += *incx;/* L130: */			}			if (nounit) {			    d_cnjg(&z__2, &A(j,j));			    z_div(&z__1, &temp, &z__2);			    temp.r = z__1.r, temp.i = z__1.i;			}		    }		    i__2 = jx;		    X(jx).r = temp.r, X(jx).i = temp.i;		    jx += *incx;/* L140: */		}	    }	} else {	    if (*incx == 1) {		for (j = *n; j >= 1; --j) {		    i__1 = j;		    temp.r = X(j).r, temp.i = X(j).i;		    if (noconj) {			i__1 = j + 1;			for (i = *n; i >= j+1; --i) {			    i__2 = i + j * a_dim1;			    i__3 = i;			    z__2.r = A(i,j).r * X(i).r - A(i,j).i * X(				    i).i, z__2.i = A(i,j).r * X(i).i + 				    A(i,j).i * X(i).r;			    z__1.r = temp.r - z__2.r, z__1.i = temp.i - 				    z__2.i;			    temp.r = z__1.r, temp.i = z__1.i;/* L150: */			}			if (nounit) {			    z_div(&z__1, &temp, &A(j,j));			    temp.r = z__1.r, temp.i = z__1.i;			}		    } else {			i__1 = j + 1;			for (i = *n; i >= j+1; --i) {			    d_cnjg(&z__3, &A(i,j));			    i__2 = i;			    z__2.r = z__3.r * X(i).r - z__3.i * X(i).i, 				    z__2.i = z__3.r * X(i).i + z__3.i * X(				    i).r;			    z__1.r = temp.r - z__2.r, z__1.i = temp.i - 				    z__2.i;			    temp.r = z__1.r, temp.i = z__1.i;/* L160: */			}			if (nounit) {			    d_cnjg(&z__2, &A(j,j));			    z_div(&z__1, &temp, &z__2);			    temp.r = z__1.r, temp.i = z__1.i;			}		    }		    i__1 = j;		    X(j).r = temp.r, X(j).i = temp.i;/* L170: */		}	    } else {		kx += (*n - 1) * *incx;		jx = kx;		for (j = *n; j >= 1; --j) {		    ix = kx;		    i__1 = jx;		    temp.r = X(jx).r, temp.i = X(jx).i;		    if (noconj) {			i__1 = j + 1;			for (i = *n; i >= j+1; --i) {			    i__2 = i + j * a_dim1;			    i__3 = ix;			    z__2.r = A(i,j).r * X(ix).r - A(i,j).i * X(				    ix).i, z__2.i = A(i,j).r * X(ix).i + 				    A(i,j).i * X(ix).r;			    z__1.r = temp.r - z__2.r, z__1.i = temp.i - 				    z__2.i;			    temp.r = z__1.r, temp.i = z__1.i;			    ix -= *incx;/* L180: */			}			if (nounit) {			    z_div(&z__1, &temp, &A(j,j));			    temp.r = z__1.r, temp.i = z__1.i;			}		    } else {			i__1 = j + 1;			for (i = *n; i >= j+1; --i) {			    d_cnjg(&z__3, &A(i,j));			    i__2 = ix;			    z__2.r = z__3.r * X(ix).r - z__3.i * X(ix).i, 				    z__2.i = z__3.r * X(ix).i + z__3.i * X(				    ix).r;			    z__1.r = temp.r - z__2.r, z__1.i = temp.i - 				    z__2.i;			    temp.r = z__1.r, temp.i = z__1.i;			    ix -= *incx;/* L190: */			}			if (nounit) {			    d_cnjg(&z__2, &A(j,j));			    z_div(&z__1, &temp, &z__2);			    temp.r = z__1.r, temp.i = z__1.i;			}		    }		    i__1 = jx;		    X(jx).r = temp.r, X(jx).i = temp.i;		    jx -= *incx;/* L200: */		}	    }	}    }    return 0;/*     End of ZTRSV . */} /* ztrsv_ */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -