⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 zlinsolx1.c

📁 SuperLU is a general purpose library for the direct solution of large, sparse, nonsymmetric systems
💻 C
字号:
/* * -- SuperLU routine (version 3.0) -- * Univ. of California Berkeley, Xerox Palo Alto Research Center, * and Lawrence Berkeley National Lab. * October 15, 2003 * */#include "slu_zdefs.h"main(int argc, char *argv[]){/* * Purpose * ======= * * The driver program ZLINSOLX1. * * This example illustrates how to use ZGSSVX to solve systems with the same * A but different right-hand side. * In this case, we factorize A only once in the first call to DGSSVX, * and reuse the following data structures in the subsequent call to ZGSSVX: *     perm_c, perm_r, R, C, L, U. *  */    char           equed[1];    yes_no_t       equil;    trans_t        trans;    SuperMatrix    A, L, U;    SuperMatrix    B, X;    NCformat       *Astore;    NCformat       *Ustore;    SCformat       *Lstore;    doublecomplex         *a;    int            *asub, *xa;    int            *perm_c; /* column permutation vector */    int            *perm_r; /* row permutations from partial pivoting */    int            *etree;    void           *work;    int            info, lwork, nrhs, ldx;    int            i, m, n, nnz;    doublecomplex         *rhsb, *rhsx, *xact;    double         *R, *C;    double         *ferr, *berr;    double         u, rpg, rcond;    mem_usage_t    mem_usage;    superlu_options_t options;    SuperLUStat_t stat;    extern void    parse_command_line();#if ( DEBUGlevel>=1 )    CHECK_MALLOC("Enter main()");#endif    /* Defaults */    lwork = 0;    nrhs  = 1;    equil = YES;	    u     = 1.0;    trans = NOTRANS;    /* Set the default values for options argument:	options.Fact = DOFACT;        options.Equil = YES;    	options.ColPerm = COLAMD;	options.DiagPivotThresh = 1.0;    	options.Trans = NOTRANS;    	options.IterRefine = NOREFINE;    	options.SymmetricMode = NO;    	options.PivotGrowth = NO;    	options.ConditionNumber = NO;    	options.PrintStat = YES;    */    set_default_options(&options);    /* Can use command line input to modify the defaults. */    parse_command_line(argc, argv, &lwork, &u, &equil, &trans);    options.Equil = equil;    options.DiagPivotThresh = u;    options.Trans = trans;        if ( lwork > 0 ) {	work = SUPERLU_MALLOC(lwork);	if ( !work ) {	    ABORT("ZLINSOLX: cannot allocate work[]");	}    }    /* Read matrix A from a file in Harwell-Boeing format.*/    zreadhb(&m, &n, &nnz, &a, &asub, &xa);        zCreate_CompCol_Matrix(&A, m, n, nnz, a, asub, xa, SLU_NC, SLU_Z, SLU_GE);    Astore = A.Store;    printf("Dimension %dx%d; # nonzeros %d\n", A.nrow, A.ncol, Astore->nnz);        if ( !(rhsb = doublecomplexMalloc(m * nrhs)) ) ABORT("Malloc fails for rhsb[].");    if ( !(rhsx = doublecomplexMalloc(m * nrhs)) ) ABORT("Malloc fails for rhsx[].");    zCreate_Dense_Matrix(&B, m, nrhs, rhsb, m, SLU_DN, SLU_Z, SLU_GE);    zCreate_Dense_Matrix(&X, m, nrhs, rhsx, m, SLU_DN, SLU_Z, SLU_GE);    xact = doublecomplexMalloc(n * nrhs);    ldx = n;    zGenXtrue(n, nrhs, xact, ldx);    zFillRHS(trans, nrhs, xact, ldx, &A, &B);        if ( !(etree = intMalloc(n)) ) ABORT("Malloc fails for etree[].");    if ( !(perm_r = intMalloc(m)) ) ABORT("Malloc fails for perm_r[].");    if ( !(perm_c = intMalloc(n)) ) ABORT("Malloc fails for perm_c[].");    if ( !(R = (double *) SUPERLU_MALLOC(A.nrow * sizeof(double))) )         ABORT("SUPERLU_MALLOC fails for R[].");    if ( !(C = (double *) SUPERLU_MALLOC(A.ncol * sizeof(double))) )        ABORT("SUPERLU_MALLOC fails for C[].");    if ( !(ferr = (double *) SUPERLU_MALLOC(nrhs * sizeof(double))) )        ABORT("SUPERLU_MALLOC fails for ferr[].");    if ( !(berr = (double *) SUPERLU_MALLOC(nrhs * sizeof(double))) )         ABORT("SUPERLU_MALLOC fails for berr[].");    /* Initialize the statistics variables. */    StatInit(&stat);        /* ONLY PERFORM THE LU DECOMPOSITION */    B.ncol = 0;  /* Indicate not to solve the system */    zgssvx(&options, &A, perm_c, perm_r, etree, equed, R, C,           &L, &U, work, lwork, &B, &X, &rpg, &rcond, ferr, berr,           &mem_usage, &stat, &info);    printf("LU factorization: zgssvx() returns info %d\n", info);    if ( info == 0 || info == n+1 ) {	if ( options.PivotGrowth ) printf("Recip. pivot growth = %e\n", rpg);	if ( options.ConditionNumber )	    printf("Recip. condition number = %e\n", rcond);        Lstore = (SCformat *) L.Store;        Ustore = (NCformat *) U.Store;	printf("No of nonzeros in factor L = %d\n", Lstore->nnz);    	printf("No of nonzeros in factor U = %d\n", Ustore->nnz);    	printf("No of nonzeros in L+U = %d\n", Lstore->nnz + Ustore->nnz - n);	printf("L\\U MB %.3f\ttotal MB needed %.3f\texpansions %d\n",	       mem_usage.for_lu/1e6, mem_usage.total_needed/1e6,	       mem_usage.expansions);	fflush(stdout);    } else if ( info > 0 && lwork == -1 ) {        printf("** Estimated memory: %d bytes\n", info - n);    }    if ( options.PrintStat ) StatPrint(&stat);    StatFree(&stat);    /* ------------------------------------------------------------       NOW WE SOLVE THE LINEAR SYSTEM USING THE FACTORED FORM OF A.       ------------------------------------------------------------*/    options.Fact = FACTORED; /* Indicate the factored form of A is supplied. */    B.ncol = nrhs;  /* Set the number of right-hand side */    /* Initialize the statistics variables. */    StatInit(&stat);    zgssvx(&options, &A, perm_c, perm_r, etree, equed, R, C,           &L, &U, work, lwork, &B, &X, &rpg, &rcond, ferr, berr,           &mem_usage, &stat, &info);    printf("Triangular solve: zgssvx() returns info %d\n", info);    if ( info == 0 || info == n+1 ) {        /* This is how you could access the solution matrix. */        doublecomplex *sol = (doublecomplex*) ((DNformat*) X.Store)->nzval; 	if ( options.IterRefine ) {            printf("Iterative Refinement:\n");	    printf("%8s%8s%16s%16s\n", "rhs", "Steps", "FERR", "BERR");	    for (i = 0; i < nrhs; ++i)	      printf("%8d%8d%16e%16e\n", i+1, stat.RefineSteps, ferr[i], berr[i]);	}	fflush(stdout);    } else if ( info > 0 && lwork == -1 ) {        printf("** Estimated memory: %d bytes\n", info - n);    }    if ( options.PrintStat ) StatPrint(&stat);    StatFree(&stat);    SUPERLU_FREE (rhsb);    SUPERLU_FREE (rhsx);    SUPERLU_FREE (xact);    SUPERLU_FREE (etree);    SUPERLU_FREE (perm_r);    SUPERLU_FREE (perm_c);    SUPERLU_FREE (R);    SUPERLU_FREE (C);    SUPERLU_FREE (ferr);    SUPERLU_FREE (berr);    Destroy_CompCol_Matrix(&A);    Destroy_SuperMatrix_Store(&B);    Destroy_SuperMatrix_Store(&X);    if ( lwork >= 0 ) {        Destroy_SuperNode_Matrix(&L);        Destroy_CompCol_Matrix(&U);    }#if ( DEBUGlevel>=1 )    CHECK_MALLOC("Exit main()");#endif}/*   * Parse command line options to get relaxed snode size, panel size, etc. */voidparse_command_line(int argc, char *argv[], int *lwork,                   double *u, yes_no_t *equil, trans_t *trans ){    int c;    extern char *optarg;    while ( (c = getopt(argc, argv, "hl:u:e:t:")) != EOF ) {	switch (c) {	  case 'h':	    printf("Options:\n");	    printf("\t-l <int> - length of work[*] array\n");	    printf("\t-u <int> - pivoting threshold\n");	    printf("\t-e <0 or 1> - equilibrate or not\n");	    printf("\t-t <0 or 1> - solve transposed system or not\n");	    exit(1);	    break;	  case 'l': *lwork = atoi(optarg);	            break;	  case 'u': *u = atof(optarg); 	            break;	  case 'e': *equil = atoi(optarg); 	            break;	  case 't': *trans = atoi(optarg);	            break;  	}    }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -