⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 sgsrfs.c

📁 SuperLU is a general purpose library for the direct solution of large, sparse, nonsymmetric systems
💻 C
字号:
/*! @file sgsrfs.c * \brief Improves computed solution to a system of inear equations *  * <pre> * -- SuperLU routine (version 3.0) -- * Univ. of California Berkeley, Xerox Palo Alto Research Center, * and Lawrence Berkeley National Lab. * October 15, 2003 * * Modified from lapack routine SGERFS * </pre> *//* * File name:	sgsrfs.c * History:     Modified from lapack routine SGERFS */#include <math.h>#include "slu_sdefs.h"/*! \brief * * <pre> *   Purpose    *   =======    * *   SGSRFS improves the computed solution to a system of linear    *   equations and provides error bounds and backward error estimates for  *   the solution.    * *   If equilibration was performed, the system becomes: *           (diag(R)*A_original*diag(C)) * X = diag(R)*B_original. * *   See supermatrix.h for the definition of 'SuperMatrix' structure. * *   Arguments    *   =========    * * trans   (input) trans_t *          Specifies the form of the system of equations: *          = NOTRANS: A * X = B  (No transpose) *          = TRANS:   A'* X = B  (Transpose) *          = CONJ:    A**H * X = B  (Conjugate transpose) *    *   A       (input) SuperMatrix* *           The original matrix A in the system, or the scaled A if *           equilibration was done. The type of A can be: *           Stype = SLU_NC, Dtype = SLU_S, Mtype = SLU_GE. *     *   L       (input) SuperMatrix* *	     The factor L from the factorization Pr*A*Pc=L*U. Use *           compressed row subscripts storage for supernodes,  *           i.e., L has types: Stype = SLU_SC, Dtype = SLU_S, Mtype = SLU_TRLU. *  *   U       (input) SuperMatrix* *           The factor U from the factorization Pr*A*Pc=L*U as computed by *           sgstrf(). Use column-wise storage scheme,  *           i.e., U has types: Stype = SLU_NC, Dtype = SLU_S, Mtype = SLU_TRU. * *   perm_c  (input) int*, dimension (A->ncol) *	     Column permutation vector, which defines the  *           permutation matrix Pc; perm_c[i] = j means column i of A is  *           in position j in A*Pc. * *   perm_r  (input) int*, dimension (A->nrow) *           Row permutation vector, which defines the permutation matrix Pr; *           perm_r[i] = j means row i of A is in position j in Pr*A. * *   equed   (input) Specifies the form of equilibration that was done. *           = 'N': No equilibration. *           = 'R': Row equilibration, i.e., A was premultiplied by diag(R). *           = 'C': Column equilibration, i.e., A was postmultiplied by *                  diag(C). *           = 'B': Both row and column equilibration, i.e., A was replaced  *                  by diag(R)*A*diag(C). * *   R       (input) float*, dimension (A->nrow) *           The row scale factors for A. *           If equed = 'R' or 'B', A is premultiplied by diag(R). *           If equed = 'N' or 'C', R is not accessed. *  *   C       (input) float*, dimension (A->ncol) *           The column scale factors for A. *           If equed = 'C' or 'B', A is postmultiplied by diag(C). *           If equed = 'N' or 'R', C is not accessed. * *   B       (input) SuperMatrix* *           B has types: Stype = SLU_DN, Dtype = SLU_S, Mtype = SLU_GE. *           The right hand side matrix B. *           if equed = 'R' or 'B', B is premultiplied by diag(R). * *   X       (input/output) SuperMatrix* *           X has types: Stype = SLU_DN, Dtype = SLU_S, Mtype = SLU_GE. *           On entry, the solution matrix X, as computed by sgstrs(). *           On exit, the improved solution matrix X. *           if *equed = 'C' or 'B', X should be premultiplied by diag(C) *               in order to obtain the solution to the original system. * *   FERR    (output) float*, dimension (B->ncol)    *           The estimated forward error bound for each solution vector    *           X(j) (the j-th column of the solution matrix X).    *           If XTRUE is the true solution corresponding to X(j), FERR(j)  *           is an estimated upper bound for the magnitude of the largest  *           element in (X(j) - XTRUE) divided by the magnitude of the    *           largest element in X(j).  The estimate is as reliable as    *           the estimate for RCOND, and is almost always a slight    *           overestimate of the true error. * *   BERR    (output) float*, dimension (B->ncol)    *           The componentwise relative backward error of each solution    *           vector X(j) (i.e., the smallest relative change in    *           any element of A or B that makes X(j) an exact solution). * *   stat     (output) SuperLUStat_t* *            Record the statistics on runtime and floating-point operation count. *            See util.h for the definition of 'SuperLUStat_t'. * *   info    (output) int*    *           = 0:  successful exit    *            < 0:  if INFO = -i, the i-th argument had an illegal value    * *    Internal Parameters    *    ===================    * *    ITMAX is the maximum number of steps of iterative refinement.    * * </pre> */voidsgsrfs(trans_t trans, SuperMatrix *A, SuperMatrix *L, SuperMatrix *U,       int *perm_c, int *perm_r, char *equed, float *R, float *C,       SuperMatrix *B, SuperMatrix *X, float *ferr, float *berr,       SuperLUStat_t *stat, int *info){#define ITMAX 5        /* Table of constant values */    int    ione = 1;    float ndone = -1.;    float done = 1.;        /* Local variables */    NCformat *Astore;    float   *Aval;    SuperMatrix Bjcol;    DNformat *Bstore, *Xstore, *Bjcol_store;    float   *Bmat, *Xmat, *Bptr, *Xptr;    int      kase;    float   safe1, safe2;    int      i, j, k, irow, nz, count, notran, rowequ, colequ;    int      ldb, ldx, nrhs;    float   s, xk, lstres, eps, safmin;    char     transc[1];    trans_t  transt;    float   *work;    float   *rwork;    int      *iwork;    extern double slamch_(char *);    extern int slacon_(int *, float *, float *, int *, float *, int *);#ifdef _CRAY    extern int SCOPY(int *, float *, int *, float *, int *);    extern int SSAXPY(int *, float *, float *, int *, float *, int *);#else    extern int scopy_(int *, float *, int *, float *, int *);    extern int saxpy_(int *, float *, float *, int *, float *, int *);#endif    Astore = A->Store;    Aval   = Astore->nzval;    Bstore = B->Store;    Xstore = X->Store;    Bmat   = Bstore->nzval;    Xmat   = Xstore->nzval;    ldb    = Bstore->lda;    ldx    = Xstore->lda;    nrhs   = B->ncol;        /* Test the input parameters */    *info = 0;    notran = (trans == NOTRANS);    if ( !notran && trans != TRANS && trans != CONJ ) *info = -1;    else if ( A->nrow != A->ncol || A->nrow < 0 ||	      A->Stype != SLU_NC || A->Dtype != SLU_S || A->Mtype != SLU_GE )	*info = -2;    else if ( L->nrow != L->ncol || L->nrow < 0 || 	      L->Stype != SLU_SC || L->Dtype != SLU_S || L->Mtype != SLU_TRLU )	*info = -3;    else if ( U->nrow != U->ncol || U->nrow < 0 || 	      U->Stype != SLU_NC || U->Dtype != SLU_S || U->Mtype != SLU_TRU )	*info = -4;    else if ( ldb < SUPERLU_MAX(0, A->nrow) || 	      B->Stype != SLU_DN || B->Dtype != SLU_S || B->Mtype != SLU_GE )        *info = -10;    else if ( ldx < SUPERLU_MAX(0, A->nrow) || 	      X->Stype != SLU_DN || X->Dtype != SLU_S || X->Mtype != SLU_GE )	*info = -11;    if (*info != 0) {	i = -(*info);	xerbla_("sgsrfs", &i);	return;    }    /* Quick return if possible */    if ( A->nrow == 0 || nrhs == 0) {	for (j = 0; j < nrhs; ++j) {	    ferr[j] = 0.;	    berr[j] = 0.;	}	return;    }    rowequ = lsame_(equed, "R") || lsame_(equed, "B");    colequ = lsame_(equed, "C") || lsame_(equed, "B");        /* Allocate working space */    work = floatMalloc(2*A->nrow);    rwork = (float *) SUPERLU_MALLOC( A->nrow * sizeof(float) );    iwork = intMalloc(2*A->nrow);    if ( !work || !rwork || !iwork )         ABORT("Malloc fails for work/rwork/iwork.");        if ( notran ) {	*(unsigned char *)transc = 'N';        transt = TRANS;    } else {	*(unsigned char *)transc = 'T';	transt = NOTRANS;    }    /* NZ = maximum number of nonzero elements in each row of A, plus 1 */    nz     = A->ncol + 1;    eps    = slamch_("Epsilon");    safmin = slamch_("Safe minimum");    /* Set SAFE1 essentially to be the underflow threshold times the       number of additions in each row. */    safe1  = nz * safmin;    safe2  = safe1 / eps;    /* Compute the number of nonzeros in each row (or column) of A */    for (i = 0; i < A->nrow; ++i) iwork[i] = 0;    if ( notran ) {	for (k = 0; k < A->ncol; ++k)	    for (i = Astore->colptr[k]; i < Astore->colptr[k+1]; ++i) 		++iwork[Astore->rowind[i]];    } else {	for (k = 0; k < A->ncol; ++k)	    iwork[k] = Astore->colptr[k+1] - Astore->colptr[k];    }	    /* Copy one column of RHS B into Bjcol. */    Bjcol.Stype = B->Stype;    Bjcol.Dtype = B->Dtype;    Bjcol.Mtype = B->Mtype;    Bjcol.nrow  = B->nrow;    Bjcol.ncol  = 1;    Bjcol.Store = (void *) SUPERLU_MALLOC( sizeof(DNformat) );    if ( !Bjcol.Store ) ABORT("SUPERLU_MALLOC fails for Bjcol.Store");    Bjcol_store = Bjcol.Store;    Bjcol_store->lda = ldb;    Bjcol_store->nzval = work; /* address aliasing */	    /* Do for each right hand side ... */    for (j = 0; j < nrhs; ++j) {	count = 0;	lstres = 3.;	Bptr = &Bmat[j*ldb];	Xptr = &Xmat[j*ldx];	while (1) { /* Loop until stopping criterion is satisfied. */	    /* Compute residual R = B - op(A) * X,   	       where op(A) = A, A**T, or A**H, depending on TRANS. */	    #ifdef _CRAY	    SCOPY(&A->nrow, Bptr, &ione, work, &ione);#else	    scopy_(&A->nrow, Bptr, &ione, work, &ione);#endif	    sp_sgemv(transc, ndone, A, Xptr, ione, done, work, ione);	    /* Compute componentwise relative backward error from formula 	       max(i) ( abs(R(i)) / ( abs(op(A))*abs(X) + abs(B) )(i) )   	       where abs(Z) is the componentwise absolute value of the matrix	       or vector Z.  If the i-th component of the denominator is less	       than SAFE2, then SAFE1 is added to the i-th component of the   	       numerator before dividing. */	    for (i = 0; i < A->nrow; ++i) rwork[i] = fabs( Bptr[i] );	    	    /* Compute abs(op(A))*abs(X) + abs(B). */	    if (notran) {		for (k = 0; k < A->ncol; ++k) {		    xk = fabs( Xptr[k] );		    for (i = Astore->colptr[k]; i < Astore->colptr[k+1]; ++i)			rwork[Astore->rowind[i]] += fabs(Aval[i]) * xk;		}	    } else {		for (k = 0; k < A->ncol; ++k) {		    s = 0.;		    for (i = Astore->colptr[k]; i < Astore->colptr[k+1]; ++i) {			irow = Astore->rowind[i];			s += fabs(Aval[i]) * fabs(Xptr[irow]);		    }		    rwork[k] += s;		}	    }	    s = 0.;	    for (i = 0; i < A->nrow; ++i) {		if (rwork[i] > safe2) {		    s = SUPERLU_MAX( s, fabs(work[i]) / rwork[i] );		} else if ( rwork[i] != 0.0 ) {                    /* Adding SAFE1 to the numerator guards against                       spuriously zero residuals (underflow). */		    s = SUPERLU_MAX( s, (safe1 + fabs(work[i])) / rwork[i] );                }                /* If rwork[i] is exactly 0.0, then we know the true                    residual also must be exactly 0.0. */	    }	    berr[j] = s;	    /* Test stopping criterion. Continue iterating if   	       1) The residual BERR(J) is larger than machine epsilon, and   	       2) BERR(J) decreased by at least a factor of 2 during the   	          last iteration, and   	       3) At most ITMAX iterations tried. */	    if (berr[j] > eps && berr[j] * 2. <= lstres && count < ITMAX) {		/* Update solution and try again. */		sgstrs (trans, L, U, perm_c, perm_r, &Bjcol, stat, info);		#ifdef _CRAY		SAXPY(&A->nrow, &done, work, &ione,		       &Xmat[j*ldx], &ione);#else		saxpy_(&A->nrow, &done, work, &ione,		       &Xmat[j*ldx], &ione);#endif		lstres = berr[j];		++count;	    } else {		break;	    }        	} /* end while */	stat->RefineSteps = count;	/* Bound error from formula:	   norm(X - XTRUE) / norm(X) .le. FERR = norm( abs(inv(op(A)))*   	   ( abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) / norm(X)             where               norm(Z) is the magnitude of the largest component of Z               inv(op(A)) is the inverse of op(A)               abs(Z) is the componentwise absolute value of the matrix or	       vector Z               NZ is the maximum number of nonzeros in any row of A, plus 1               EPS is machine epsilon             The i-th component of abs(R)+NZ*EPS*(abs(op(A))*abs(X)+abs(B))             is incremented by SAFE1 if the i-th component of             abs(op(A))*abs(X) + abs(B) is less than SAFE2.             Use SLACON to estimate the infinity-norm of the matrix                inv(op(A)) * diag(W),             where W = abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) */		for (i = 0; i < A->nrow; ++i) rwork[i] = fabs( Bptr[i] );		/* Compute abs(op(A))*abs(X) + abs(B). */	if ( notran ) {	    for (k = 0; k < A->ncol; ++k) {		xk = fabs( Xptr[k] );		for (i = Astore->colptr[k]; i < Astore->colptr[k+1]; ++i)		    rwork[Astore->rowind[i]] += fabs(Aval[i]) * xk;	    }	} else {	    for (k = 0; k < A->ncol; ++k) {		s = 0.;		for (i = Astore->colptr[k]; i < Astore->colptr[k+1]; ++i) {		    irow = Astore->rowind[i];		    xk = fabs( Xptr[irow] );		    s += fabs(Aval[i]) * xk;		}		rwork[k] += s;	    }	}		for (i = 0; i < A->nrow; ++i)	    if (rwork[i] > safe2)		rwork[i] = fabs(work[i]) + (iwork[i]+1)*eps*rwork[i];	    else		rwork[i] = fabs(work[i])+(iwork[i]+1)*eps*rwork[i]+safe1;	kase = 0;	do {	    slacon_(&A->nrow, &work[A->nrow], work,		    &iwork[A->nrow], &ferr[j], &kase);	    if (kase == 0) break;	    if (kase == 1) {		/* Multiply by diag(W)*inv(op(A)**T)*(diag(C) or diag(R)). */		if ( notran && colequ )		    for (i = 0; i < A->ncol; ++i) work[i] *= C[i];		else if ( !notran && rowequ )		    for (i = 0; i < A->nrow; ++i) work[i] *= R[i];				sgstrs (transt, L, U, perm_c, perm_r, &Bjcol, stat, info);				for (i = 0; i < A->nrow; ++i) work[i] *= rwork[i];	    } else {		/* Multiply by (diag(C) or diag(R))*inv(op(A))*diag(W). */		for (i = 0; i < A->nrow; ++i) work[i] *= rwork[i];				sgstrs (trans, L, U, perm_c, perm_r, &Bjcol, stat, info);				if ( notran && colequ )		    for (i = 0; i < A->ncol; ++i) work[i] *= C[i];		else if ( !notran && rowequ )		    for (i = 0; i < A->ncol; ++i) work[i] *= R[i];  	    }	    	} while ( kase != 0 );	/* Normalize error. */	lstres = 0.; 	if ( notran && colequ ) {	    for (i = 0; i < A->nrow; ++i)	    	lstres = SUPERLU_MAX( lstres, C[i] * fabs( Xptr[i]) );  	} else if ( !notran && rowequ ) {	    for (i = 0; i < A->nrow; ++i)	    	lstres = SUPERLU_MAX( lstres, R[i] * fabs( Xptr[i]) );	} else {	    for (i = 0; i < A->nrow; ++i)	    	lstres = SUPERLU_MAX( lstres, fabs( Xptr[i]) );	}	if ( lstres != 0. )	    ferr[j] /= lstres;    } /* for each RHS j ... */        SUPERLU_FREE(work);    SUPERLU_FREE(rwork);    SUPERLU_FREE(iwork);    SUPERLU_FREE(Bjcol.Store);    return;} /* sgsrfs */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -