⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 stochasticeulermaruyama.hpp

📁 dysii is a C++ library for distributed probabilistic inference and learning in large-scale dynamical
💻 HPP
字号:
#ifndef INDII_ML_SDE_STOCHASTICEULERMARUYAMA_HPP#define INDII_ML_SDE_STOCHASTICEULERMARUYAMA_HPP#include "StochasticDifferentialModel.hpp"#include "StochasticNumericalSolver.hpp"namespace indii {  namespace ml {    namespace sde {    /** * Stochastic Euler-Maruyama method with fixed time step for solving a * system of stochastic differential equations. * * @author Lawrence Murray <lawrence@indii.org> * @version $Rev: 582 $ * @date $Date: 2008-12-15 17:03:50 +0000 (Mon, 15 Dec 2008) $ * * @param DT Type of the diffusion matrix. * @param DDT Type of the diffusion partial derivative matrices. * * This class numerically solves StochasticDifferentialModel models * defining a system of stochastic differential equations using an * Euler-Maruyama scheme. The time step is fixed and no error control * used. * * The general usage idiom is as for indii::ml::ode::AdaptiveRungeKutta. * * @todo This class is tightly coupled with the GSL and would benefit from * greater independence. */template <class DT = indii::ml::aux::matrix,    class DDT = indii::ml::aux::zero_matrix>class StochasticEulerMaruyama :    public indii::ml::sde::StochasticNumericalSolver {public:  /**   * Constructor.   *   * @param model Model to estimate.   *   * The time is initialised to zero, but the state is uninitialised   * and should be set with setVariable() or setState().   */  StochasticEulerMaruyama(StochasticDifferentialModel<DT,DDT>* model);  /**   * Constructor.   *   * @param model Model to estimate.   * @param y0 Initial state.   *   * The time is initialised to zero and the state to that given.   */  StochasticEulerMaruyama(StochasticDifferentialModel<DT,DDT>* model,      const indii::ml::aux::vector& y0);  /**   * Destructor.   */  virtual ~StochasticEulerMaruyama();  virtual double step(double upper);  virtual double stepBack(double lower);  virtual int calculateDerivativesForward(double t, const double y[],      double dydt[]);  virtual int calculateDerivativesBackward(double t, const double y[],      double dydt[]);private:  /**   * Model.   */  StochasticDifferentialModel<DT,DDT>* model;  /**   * Drift.   */  indii::ml::aux::vector a;    /**   * Diffusion.   */  DT B;};    }  }}#include "boost/numeric/ublas/operation.hpp"#include "boost/numeric/ublas/operation_sparse.hpp"template <class DT, class DDT>indii::ml::sde::StochasticEulerMaruyama<DT,DDT>::StochasticEulerMaruyama(    StochasticDifferentialModel<DT,DDT>* model) :    StochasticNumericalSolver(model->getDimensions(),    model->getNoiseDimensions()), model(model), a(model->getDimensions()),    B(model->getDimensions(), model->getNoiseDimensions()) {  a.clear();  B.clear();  setStepType(gsl_odeiv_step_gear1);}template <class DT, class DDT>indii::ml::sde::StochasticEulerMaruyama<DT,DDT>::StochasticEulerMaruyama(    StochasticDifferentialModel<DT,DDT>* model,    const indii::ml::aux::vector& y0) : StochasticNumericalSolver(y0,    model->getNoiseDimensions()), model(model), a(model->getDimensions()),    B(model->getDimensions(), model->getNoiseDimensions()) {  /* pre-condition */  assert (y0.size() == model->getDimensions());  a.clear();  B.clear();  setStepType(gsl_odeiv_step_gear1);}template <class DT, class DDT>indii::ml::sde::StochasticEulerMaruyama<DT,DDT>::~StochasticEulerMaruyama() {  //}template <class DT, class DDT>double indii::ml::sde::StochasticEulerMaruyama<DT,DDT>::step(    double upper) {  /* pre-condition */  assert (upper > t);  const unsigned int N = model->getDimensions();  const unsigned int V = model->getNoiseDimensions();  double ts, h;  /* make sure step size won't exceed upper bound */  if (maxStepSize > 0.0 && stepSize > maxStepSize) {    stepSize = maxStepSize;  }  ts = t + stepSize;  if (ts > upper) {    ts = upper;  }  /* stepping variables */  aux::vector y(this->getState());  /* step */  sampleNoise(&ts);  h = ts - t;  model->calculateDrift(t, y, a);  model->calculateDiffusion(t, y, B);  noalias(y) = y + h*a;  ublas::axpy_prod(B, dWf.top(), y, false);  /* update state */  aux::vectorToArray(y, this->y); // don't use setState(), clears tf and dWf  /* update time */  t = ts;  /* clean up future path */  tf.pop(); // full step sample  dWf.pop();  /* post-condition */  assert (tf.empty() || t < tf.top());  assert (t <= upper);  return t;}template <class DT, class DDT>inline double indii::ml::sde::StochasticEulerMaruyama<DT,DDT>::stepBack(    double lower) {  double t = NumericalSolver::stepBack(lower);  return t;}template <class DT, class DDT>inline int indii::ml::sde::StochasticEulerMaruyama<DT,DDT>::calculateDerivativesForward(    double ts, const double y[], double dydt[]) {  /* not required by this implementation */  assert (false);    return GSL_FAILURE;}template <class DT, class DDT>inline int indii::ml::sde::StochasticEulerMaruyama<DT,DDT>::calculateDerivativesBackward(    double t, const double y[], double dydt[]) {  /* not required by this implementation */  assert (false);    return GSL_FAILURE;}#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -