⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 adaptiverungekutta.cpp

📁 dysii is a C++ library for distributed probabilistic inference and learning in large-scale dynamical
💻 CPP
字号:
//#if defined(__GNUC__) && defined(GCC_PCH)//  #include "../aux/aux.hpp"//#endif#include "AdaptiveRungeKutta.hpp"#include <assert.h>#include <math.h>#include <gsl/gsl_errno.h>using namespace indii::ml::ode;namespace aux = indii::ml::aux;const gsl_odeiv_step_type* AdaptiveRungeKutta::gslStepType    = gsl_odeiv_step_rkf45;  // explicit method  //= gsl_odeiv_step_rk4imp; // implicit methodAdaptiveRungeKutta::AdaptiveRungeKutta(DifferentialModel* model) :  NumericalSolver(model->getDimensions()), model(model) {  setStepType(gslStepType);}AdaptiveRungeKutta::AdaptiveRungeKutta(DifferentialModel* model,    const aux::vector& y0) : NumericalSolver(y0), model(model) {  /* pre-condition */  assert (y0.size() == model->getDimensions());  setStepType(gslStepType);}AdaptiveRungeKutta::~AdaptiveRungeKutta() {  //}int AdaptiveRungeKutta::calculateDerivativesForward(double t,    const double y[], double dydt[]) {  model->calculateDerivatives(t, y, dydt);  return GSL_SUCCESS;}int AdaptiveRungeKutta::calculateDerivativesBackward(double t,    const double y[], double dydt[]) {  /* convert the proposed step to a future time into a proposed step     to a past time */  int result = calculateDerivativesForward(2.0 * base - t, y, dydt);  if (result == GSL_SUCCESS) {    /* as we're moving backward in time, negate gradients */    size_t i;    for (i = 0; i < dimensions; i++) {      dydt[i] *= -1.0;    }  }  return result;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -