📄 autocorrelator.hpp
字号:
#ifndef INDII_ML_ODE_AUTOCORRELATOR_HPP#define INDII_ML_ODE_AUTOCORRELATOR_HPP#include "NumericalSolver.hpp"#include "../aux/matrix.hpp"namespace indii { namespace ml { namespace ode {/** * Auto-correlator. * * @author Lawrence Murray <lawrence@indii.org> * @version $Rev: 574 $ * @date $Date: 2008-10-04 14:14:57 +0100 (Sat, 04 Oct 2008) $ * * Calculates the autocorrelation of a Markov process for a particular time * step \f$\Delta t\f$: * * \f[ * R_s(\Delta t) = \left(\sum_{n = 1}^{s}\mathbf{y}_{n-1}\mathbf{y}_n^T - * \hat{\mathbf{\mu}}_s\hat{\mathbf{\mu}}_s^T\right) \hat{\Sigma}_s^{-1} * \,, * \f] * * where \f$s\f$ is the current step, each \f$\mathbf{y}_n\f$ is the state * of the system at step \f$n\f$ (time \f$n\Delta t\f$), and * \f$\hat{\mathbf{\mu}}_s\f$ and \f$\hat{\Sigma}_s\f$ are the sample mean * and covariance of \f$\mathbf{y}_0,\ldots,\mathbf{y}_s\f$, respectively. * * The autocovariance is given by the autocorrelation without the * normalisation term. * * @section Usage * * Firstly construct a NumericalSolver for simulating a trajectory from the * model of interest. Pass this into the constructor of the * AutoCorrelator object. * * Call step() to advance the system by a number of steps, adding each new * point to the autocorrelation calculation. The return value of step() * indicates whether the calculation has converged. Note that this * convergence check compares the autocorrelations before and after the call * to step(), so that multiple calls are necessary for the return value to be * meaningful. */class AutoCorrelator {public: /** * Constructor. * * @param solver Numerical solver. * @param delta \f$\Delta t\f$; time step. */ AutoCorrelator(NumericalSolver* solver, const double delta); /** * Destructor. */ virtual ~AutoCorrelator(); /** * Set the error bounds for the convergence criterion. * * @param maxAbsoluteError The maximum permitted absolute error. */ void setErrorBounds(double maxAbsoluteError = 1e-3); /** * Get the autocorrelation as calculated up to the current time. * * @return Autocorrelation as calculated up to the current time. */ const indii::ml::aux::matrix& getAutoCorrelation(); /** * Get the autocovariance as calculated up to the current time. * * @return Autocovariance as calculated up to the current time. */ const indii::ml::aux::matrix& getAutoCovariance(); /** * Step. * * @param steps \f$\delta s\f$; number of steps to take. * * @return True if the calculation has converged. * * Advances system in time by \f$\Delta s \Delta t\f$ and adds the new * point to the autocorrelation calculation. * * Convergence is checked in the sense: * * \f[ * \|R_s(\Delta t) - R_{s+\Delta s}(\Delta t)\| < \epsilon + * \xi\|R_s(\Delta t) - R_{s+\Delta s}(\Delta t)\|\,, * \f] * * where \f$\epsilon\f$ is the maximum permitted absolute error, and * \f$\xi\f$ the maximum permitted relative error. */ bool step(const unsigned int steps); private: /** * Numerical solver. */ NumericalSolver* solver; /** * \f$\Delta t\f$; time step. */ const double delta; /** * \f$t\f$; current time step. */ unsigned int s; /** * \f$s\mathbf{\mu}_t\f$; mean at current time. */ indii::ml::aux::vector mu; /** * \f$\Sigma_t\f$; covariance at current time, no mean correction. */ indii::ml::aux::symmetric_matrix sigma; /** * \f$\frac{1}{s}\sum_{n = 1}{s}\mathbf{y}_{n-1}\mathbf{y}_n^T\f$; * cross correlation numerator sum at current time. */ indii::ml::aux::matrix cross; /** * \f$R_s(\Delta t)\f$; autocorrelation at the current time. */ indii::ml::aux::matrix R; /** * Autocovariance at the current time. */ indii::ml::aux::matrix P; /** * \f$\epsilon\f$; absolute error bound. */ double maxAbsoluteError; }; } }}#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -