⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 wienerprocess.hpp

📁 dysii is a C++ library for distributed probabilistic inference and learning in large-scale dynamical
💻 HPP
字号:
#ifndef INDII_ML_AUX_WIENERPROCESS_HPP#define INDII_ML_AUX_WIENERPROCESS_HPP#include "StochasticProcess.hpp"namespace indii {  namespace ml {    namespace aux {/** * Multivariate Wiener process. * * @author Lawrence Murray <lawrence@indii.org> * @version $Rev: 565 $ * @date $Date: 2008-09-13 22:25:02 +0100 (Sat, 13 Sep 2008) $ * * This class supports serialization through the Boost.Serialization * library. */template <class T = unsigned int>class WienerProcess : public StochasticProcess<T> {public:  /**   * Default constructor.   *   * Initialises the Wiener process with zero dimensions. This should   * generally only be used when the object is to be restored from a   * serialization.   */  WienerProcess();  /**   * Construct Wiener process of given dimensionality.   *   * @param N \f$N\f$; number of dimensions in the process.   *   * The drift is initialised to zero and the diffusion to the   * identity matrix, giving the standard Wiener process.   */  WienerProcess(unsigned int N);  /**   * Destructor.   */  virtual ~WienerProcess();  virtual void setDimensions(const unsigned int N,      const bool preserve = false);  /**   * Get the drift of the process.   *   * @return The drift of the process.   */  virtual const vector& getDrift() const;  /**   * Get the diffusion of the process.   *   * @return The diffusion of the process.   */  virtual const symmetric_matrix& getDiffusion() const;  virtual const vector& getDrift();  virtual const symmetric_matrix& getDiffusion();  virtual vector getExpectation(const T delta);  virtual symmetric_matrix getCovariance(const T delta);  /**   * Get the expected value of the process after a given time has   * elapsed.   *   * @param delta \f$\Delta t\f$; elapsed time.   *   * @return \f$\mathbf{\mu}(\Delta t)\f$; expected value of the process   * after time \f$\Delta t\f$.   */  virtual vector getExpectation(const T delta) const;  /**   * Get the covariance of the process after a given time has elapsed.   *   * @param delta \f$\Delta t\f$; elapsed time.   *   * @return \f$\Sigma(\Delta t)\f$; covariance of the process after   * time \f$\Delta t\f$.   */  virtual symmetric_matrix getCovariance(const T delta) const;  /**   * Sample from the process after a given time has elapsed.   *   * @param delta \f$\Delta t\f$; elapsed time.   *   * This is performed using the following process:   *   * @li Let \f$\mathbf{z}\f$ be a vector of \f$N\f$ independent   * normal variates with mean zero and variance \f$\Delta t\f$.   *   * @li Then the sample is \f$\mathbf{x} = \Delta t \mathbf{\mu} +   * L\mathbf{z}\f$, where \f$L\f$ is the Cholesky decomposition of   * the diffusion.   *   * @return The sample \f$\mathbf{x}\f$   */  virtual vector sample(const T delta);  /**   * Calculate the density of the distribution at a given point after   * a given time has elapsed:   *   * \f[p(\mathbf{x},\Delta t) =   *   \frac{1}{\sqrt{(2\pi\Delta t)^N|\Sigma|}}   *   \exp\big({-\frac{1}{2\Delta t}(\mathbf{x}-\mathbf{\mu})^T \Sigma^{-1}    *   (\mathbf{x}-\mathbf{\mu})\big)}   * \f]   *   * @param delta \f$\Delta t\f$; elapsed time.   * @param x \f$\mathbf{x}\f$; the point at which to calculate the   * density.   *   * @return The density of the distribution at \f$\mathbf{x}\f$ after   * time \f$\Delta t\f$.   */  virtual double densityAt(const T delta, const vector& x);private:  /**   * Drift.   */  vector mu;    /**   * Diffusion.   */  symmetric_matrix sigma;  /**   * Serialize.   */  template<class Archive>  void save(Archive& ar, const unsigned int version) const;  /**   * Restore from serialization.   */  template<class Archive>  void load(Archive& ar, const unsigned int version);  /*   * Boost.Serialization requirements.   */  BOOST_SERIALIZATION_SPLIT_MEMBER()  friend class boost::serialization::access;};    }  }}#include "Random.hpp"#include "boost/serialization/base_object.hpp"#include <assert.h>using namespace indii::ml::aux;namespace ublas = boost::numeric::ublas;template <class T>WienerProcess<T>::WienerProcess() : mu(0), sigma(0) {  //}template <class T>WienerProcess<T>::WienerProcess(unsigned int N) : StochasticProcess<T>(N),    mu(N), sigma(N) {  noalias(mu) = zero_vector(N);  noalias(sigma) = identity_matrix(N,N);}template <class T>WienerProcess<T>::~WienerProcess() {  //}template <class T>void WienerProcess<T>::setDimensions(const unsigned int N,    const bool preserve) {  this->N = N;  mu.resize(N, true); // force preservation, or object will be invalid  sigma.resize(N, true);}template <class T>vector WienerProcess<T>::getExpectation(const T delta) const {  return mu;}  template <class T>symmetric_matrix WienerProcess<T>::getCovariance(const T delta) const {  return delta * sigma;}template <class T>vector WienerProcess<T>::getExpectation(const T delta) {  return mu;}  template <class T>symmetric_matrix WienerProcess<T>::getCovariance(const T delta) {  return delta * sigma;}template <class T>const vector& WienerProcess<T>::getDrift() {  return mu;}  template <class T>const symmetric_matrix& WienerProcess<T>::getDiffusion() {  return sigma;}template <class T>const vector& WienerProcess<T>::getDrift() const {  return mu;}  template <class T>const symmetric_matrix& WienerProcess<T>::getDiffusion() const {  return sigma;}template <class T>vector WienerProcess<T>::sample(const T delta) {  vector z(this->N);  unsigned int i;  for (i = 0; i < this->N; i++) {    z(i) = Random::gaussian(0.0, sqrt(delta));  }  return z;}template <class T>double WienerProcess<T>::densityAt(const T delta, const vector& x) {  double deltaI = 1.0 / delta;  double exponent = inner_prod(x,x);  double z = sqrt(std::pow(2.0*M_PI*deltaI, static_cast<int>(this->N)));    return z * exp(-0.5 * deltaI * exponent);}template <class T>template <class Archive>void indii::ml::aux::WienerProcess<T>::save(Archive& ar,    const unsigned int version) const {  ar & boost::serialization::base_object<StochasticProcess<T> >(*this);  ar & mu;    /* serialization of symmetric_matrix not yet supported in ublas */  const aux::matrix tmp(sigma);  ar & tmp;}template <class T>template <class Archive>void indii::ml::aux::WienerProcess<T>::load(Archive& ar,    const unsigned int version) {  ar & boost::serialization::base_object<StochasticProcess<T> >(*this);  ar & mu;    /* serialization of symmetric_matrix not yet supported in ublas */  aux::matrix tmp(this->N,this->N);  ar & tmp;  noalias(sigma) = boost::numeric::ublas::symmetric_adaptor<aux::matrix>(tmp);}#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -