⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 almostgaussiankernel.hpp

📁 dysii is a C++ library for distributed probabilistic inference and learning in large-scale dynamical
💻 HPP
字号:
#ifndef INDII_ML_AUX_ALMOSTGAUSSIANKERNEL_HPP#define INDII_ML_AUX_ALMOSTGAUSSIANKERNEL_HPP#include "Kernel.hpp"namespace indii {  namespace ml {    namespace aux {/** * Gaussian kernel for density estimation without squared exponent. * * @author Lawrence Murray <lawrence@indii.org> * @version $Rev: 531 $ * @date $Date: 2008-08-25 16:09:23 +0100 (Mon, 25 Aug 2008) $ * * The kernel takes the form: * * \f[ *   K(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x} * \f] * * Note that the \f$x\f$ in the exponent is not squared as per the usual * Gaussian. This means that the kernel is actually a scaled Laplacian * (i.e. does not integrate to 1). Combining with Almost2Norm, however, * produces the same result as using PNorm<2> and GaussianKernel, but is * much more efficient, as the square root in the norm and square in the  * exponent of the Gaussian are cancelled. * * @see #hopt for guidance as to bandwidth selection. * * @section Serialization * * This class supports serialization through the Boost.Serialization * library. */class AlmostGaussianKernel : public Kernel {public:  /**   * Default constructor.   *   * This should generally only be used when the object is to be restored   * from a serialization.   */  AlmostGaussianKernel();  /**   * Constructor.   *   * @param N \f$N\f$; dimensionality of the problem.   * @param h \f$h\f$; the scaling parameter (bandwidth).   *   * Although the kernel itself is not intrinsically dependent on \f$N\f$   * and \f$h\f$, its normalisation is. Supplying these allows substantial   * performance increases through precalculationa.   */  AlmostGaussianKernel(const unsigned int N, const double h);  /**   * Destructor.   */  virtual ~AlmostGaussianKernel();  virtual double operator()(const double x) const;  /**   * Sample from the kernel.   *   * @return A sample from the kernel.   */  virtual double sample() const;  private:  /**   * \f$(h\sqrt{2\pi})^{-1}\f$; the normalisation term.   */  double ZI;    /**   * \f$(-2h^2)^{-1}\f$; the exponent term.   */  double E;  /**   * Serialize.   */  template<class Archive>  void serialize(Archive& ar, const unsigned int version);  /*   * Boost.Serialization requirements.   */  friend class boost::serialization::access;};    }  }}#include "Random.hpp"#include <math.h>inline double indii::ml::aux::AlmostGaussianKernel::operator()(const double x)    const {  return ZI * exp(E * x);}inline double indii::ml::aux::AlmostGaussianKernel::sample() const {  return fabs(Random::gaussian(0.0, getBandwidth()));}template<class Archive>void indii::ml::aux::AlmostGaussianKernel::serialize(Archive& ar,    const unsigned int version) {    ar & boost::serialization::base_object<Kernel>(*this);  ar & ZI;  ar & E;}#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -