⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 parallel.hpp

📁 dysii is a C++ library for distributed probabilistic inference and learning in large-scale dynamical
💻 HPP
字号:
#ifndef INDII_ML_AUX_PARALLEL_HPP#define INDII_ML_AUX_PARALLEL_HPP#include "vector.hpp"#include "matrix.hpp"#include "boost/mpi.hpp"#include <functional>namespace boost {  namespace mpi {    /* Omit these from documentation */    /// @cond COMMUTATIVE    template<>    struct is_commutative<std::plus<unsigned int>, unsigned int> : mpl::true_ {      //    };    template<>    struct is_commutative<std::plus<double>, double> : mpl::true_ {      //    };    template<>    struct is_commutative<std::plus<indii::ml::aux::vector>,        indii::ml::aux::vector> : mpl::true_ {      //    };    template<>    struct is_commutative<std::plus<indii::ml::aux::matrix>,        indii::ml::aux::matrix> : mpl::true_ {      //    };    template<>    struct is_commutative<std::plus<indii::ml::aux::symmetric_matrix>,        indii::ml::aux::symmetric_matrix> : mpl::true_ {      //    };    template<>    struct is_commutative<std::plus<indii::ml::aux::lower_triangular_matrix>,        indii::ml::aux::lower_triangular_matrix> : mpl::true_ {      //    };    template<>    struct is_commutative<std::plus<indii::ml::aux::upper_triangular_matrix>,        indii::ml::aux::upper_triangular_matrix> : mpl::true_ {      //    };    template<>    struct is_commutative<std::plus<indii::ml::aux::identity_matrix>,        indii::ml::aux::identity_matrix> : mpl::true_ {      //    };    template<>    struct is_commutative<std::plus<indii::ml::aux::zero_matrix>,        indii::ml::aux::zero_matrix> : mpl::true_ {      //    };    template<>    struct is_commutative<std::plus<indii::ml::aux::scalar_matrix>,        indii::ml::aux::scalar_matrix> : mpl::true_ {      //    };    template<>    struct is_commutative<std::plus<indii::ml::aux::sparse_matrix>,        indii::ml::aux::sparse_matrix> : mpl::true_ {      //    };    /// @endcond  }}namespace indii {  namespace ml {    namespace aux {  /**   * Determine a node's share of some number of items.   *   * @param P The number of items.   *   * @return The node's share of this number of items. This is simply   * @p P divided by the number of nodes, with lower ranks taking on   * an additional item if there are remainders.   */  unsigned int shareOf(const unsigned int P);  /**   * Rotate variable values between all nodes. For \f$N\f$ nodes, node   * \f$i\f$ sends its value to node \f$i+N-1\pmod{N}\f$ and receives   * the value of node \f$i+1\pmod{N}\f$. This facilitates   * calculations involving data stored across multiple nodes without   * gathering all the data onto one node.   *   * @param x Value to rotate. Contains value received on return.   * @param num Number of rotations to make. Specifying a number here   * is more efficient than multiple calls.   */  template <class T>  void rotate(T& x, const unsigned int num = 1);    }  }}inline unsigned int indii::ml::aux::shareOf(const unsigned int P) {  boost::mpi::communicator world;  const unsigned int rank = world.rank();  const unsigned int size = world.size();  unsigned int P_local = P / size;  if (rank < P % size) {    P_local++;  }  return P_local;}template <class T>void indii::ml::aux::rotate(T& x, const unsigned int num = 1) {  boost::mpi::communicator world;  boost::mpi::request reqSend, reqRecv;  const unsigned int rank = world.rank();  const unsigned int size = world.size();    if (size > 1 && num > 0) {    /*     * Is it necessary to copy the sent object first in case it is      * overwritten? Presumably isend() serializes it into a buffer before     * returning so we can blat it with irecv() without problems.     */    //T send(x);    reqSend = world.isend((rank+size-num) % size, 0, x);    reqRecv = world.irecv((rank+num) % size, 0, x);    reqRecv.wait();    reqSend.wait();  }}#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -