⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 stochasticprocess.hpp

📁 dysii is a C++ library for distributed probabilistic inference and learning in large-scale dynamical
💻 HPP
字号:
#ifndef INDII_ML_AUX_STOCHASTICPROCESS_HPP#define INDII_ML_AUX_STOCHASTICPROCESS_HPP#include "vector.hpp"#include "matrix.hpp"#include "boost/serialization/serialization.hpp"namespace indii {  namespace ml {    namespace aux {/** * Abstract stochastic process. * * @author Lawrence Murray <lawrence@indii.org> * @version $Rev: 540 $ * @date $Date: 2008-08-31 14:41:46 +0100 (Sun, 31 Aug 2008) $ */template <class T = unsigned int>class StochasticProcess {public:  /**   * Default constructor.   *   * Initialises the process with zero dimensions. This should   * generally only be used when the object is to be restored from a   * serialization.   */  StochasticProcess();  /**   * Constructor.   *   * @param N \f$N\f$; number of dimensions of the process.   */  StochasticProcess(const unsigned int N);  /**   * Destructor.   */  virtual ~StochasticProcess();  /**   * Get the dimensionality of the process.   */  unsigned int getDimensions() const;  /**   * Set the dimensionality of the process.   *   * @param N Dimensionality of the process.   * @param preserve True to preserve the current sufficient   * statistics of the process in the lower dimensional space,   * false if these may be discarded.   */  virtual void setDimensions(const unsigned int N,      const bool preserve = false) = 0;  /**   * Get the drift of the process.   *   * @return The drift of the process.   */  virtual const vector& getDrift() = 0;  /**   * Get the diffusion of the process.   *   * @return The diffusion of the process.   */  virtual const symmetric_matrix& getDiffusion() = 0;  /**   * Get the expected value of the process after a given time.   *   * @param delta \f$\Delta t\f$; time step.   *   * @return \f$\mathbf{\mu}(\Delta t)\f$; expected value of the process   * after time \f$\Delta t\f$.   */  virtual vector getExpectation(const T delta) = 0;  /**   * Get the covariance of the process after a given time.   *   * @param delta \f$\Delta t\f$; time step.   *   * @return \f$\Sigma(\Delta t)\f$; covariance of the process after   * time \f$\Delta t\f$.   */  virtual symmetric_matrix getCovariance(const T delta) = 0;  /**   * Sample from the process.   *   * @param delta \f$\Delta t\f$; time step.   *   * @return A sample from the process after time \f$\Delta t\f$.   */  virtual vector sample(const T delta) = 0;  /**   * Calculate the density of the distribution at a given point after   * a given time has elapsed.   *   * @param delta \f$\Delta t\f$; elapsed time.   * @param x \f$\mathbf{x}\f$; the point at which to calculate the   * density.   *   * @return The density of the distribution at \f$\mathbf{x}\f$ after   * time \f$\Delta t\f$.   */  virtual double densityAt(const T delta, const vector& x) = 0;protected:  /**   * \f$N\f$; number of dimensions.   */  unsigned int N;private:  /**   * Serialize, or restore from serialization.   */  template<class Archive>  void serialize(Archive& ar, const unsigned int version);  /*   * Boost.Serialization requirements.   */  friend class boost::serialization::access;};    }  }}template <class T>indii::ml::aux::StochasticProcess<T>::StochasticProcess() : N(0) {  //}template <class T>indii::ml::aux::StochasticProcess<T>::StochasticProcess(    const unsigned int N) : N(N) {  //}template <class T>indii::ml::aux::StochasticProcess<T>::~StochasticProcess() {  //}template <class T>inline unsigned int indii::ml::aux::StochasticProcess<T>::getDimensions()    const {  return N;} template <class T>template <class Archive>void indii::ml::aux::StochasticProcess<T>::serialize(Archive& ar,    const unsigned int version) {  ar & N;}#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -