⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 unscentedkalmansmoothermodel.hpp

📁 dysii is a C++ library for distributed probabilistic inference and learning in large-scale dynamical
💻 HPP
字号:
#ifndef INDII_ML_FILTER_UNSCENTEDKALMANSMOOTHERMODEL_HPP#define INDII_ML_FILTER_UNSCENTEDKALMANSMOOTHERMODEL_HPP#include "UnscentedKalmanFilterModel.hpp"namespace indii {  namespace ml {    namespace filter {/** * UnscentedKalmanSmoother compatible model. * * @author Lawrence Murray <lawrence@indii.org> * @version $Rev: 329 $ * @date $Date: 2007-10-16 17:10:39 +0100 (Tue, 16 Oct 2007) $ * * @param T The type of time. *  * @see indii::ml::filter for general usage guidelines. */template <class T = unsigned int>class UnscentedKalmanSmootherModel : public UnscentedKalmanFilterModel<T> {public:  /**   * Destructor.   */  virtual ~UnscentedKalmanSmootherModel() = 0;  /**   * Propagate sample through the backward state transition function.   *   * @param x \f$\mathbf{x}^*\f$; state sample.   * @param w \f$\mathbf{w}^*\f$; noise sample.   * @param delta \f$\Delta t\f$; time step.   *   * @return \f$f(\mathbf{x}^*,\mathbf{w}^*,-\Delta t)\f$; propagation   * of \f$\mathbf{x}^*\f$ through the backward transition function,   * given noise of \f$\mathbf{w}^*\f$.   */  virtual aux::vector backwardTransition(const indii::ml::aux::vector& x,      const indii::ml::aux::vector& w, T delta) = 0;};    }  }}template <class T>indii::ml::filter::UnscentedKalmanSmootherModel<T>::~UnscentedKalmanSmootherModel() {  //}#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -