⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 twofiltersmoother.hpp

📁 dysii is a C++ library for distributed probabilistic inference and learning in large-scale dynamical
💻 HPP
字号:
#ifndef INDII_ML_FILTER_TWOFILTERSMOOTHER_HPP#define INDII_ML_FILTER_TWOFILTERSMOOTHER_HPP#include "../aux/vector.hpp"#include "../aux/Pdf.hpp"#include "Smoother.hpp"namespace indii {  namespace ml {    namespace filter {/** * Abstract smoother for estimating the state of a system by fusing * forward and backward filtering passes. * * @author Lawrence Murray <lawrence@indii.org> * @version $Rev: 544 $ * @date $Date: 2008-09-01 15:04:39 +0100 (Mon, 01 Sep 2008) $ * * @param T The type of time. * @param P The type of probability distribution used to represent the * system state. *  * @see indii::ml::filter for general usage guidelines. */template <class T = unsigned int, class P = indii::ml::aux::GaussianPdf>class TwoFilterSmoother : public Smoother<T,P> {public:  /**   * Constructor.   *   * @param tT \f$t_T\f$; starting time.   * @param p_xT \f$p(\mathbf{x}_T)\f$; prior over the state at time   * \f$t_T\f$.   */  TwoFilterSmoother(const T tT, const P& p_xT);  /**   * Destructor.   */  virtual ~TwoFilterSmoother();  /**   * Get distribution over the state at the current time given present   * and future measurements.   *   * @return \f$P\big(\mathbf{x}(t_n)\, |   * \,\mathbf{y}(t_n),\ldots,\mathbf{y}(t_T)\big)\f$; distribution   * over the current state given present and future measurements.   */  P& getBackwardFilteredState();  /**   * Set distribution over the state at the current time given present   * and future measurements.   *   * @param p_xtn_ytn \f$P\big(\mathbf{x}(t_n)\, |   * \,\mathbf{y}(t_n),\ldots,\mathbf{y}(t_T)\big)\f$; distribution   * over the current state given present and future measurements.   */  void setBackwardFilteredState(const P& p_xtn_ytn);  /**   * Rewind system to time of previous measurement and   * smooth. Performs the backward filtering step and fuses this with   * the given prediction from the forward filtering step to produce   * the smoothed prediction.   *   * @param tn \f$t_n\f$; the time to which to rewind the   * system. This must be less than the current time \f$t_{n+1}\f$.   * @param ytn \f$\mathbf{y}_n\f$; measurement at time \f$t_n\f$.   * @param p_xtn_ytn \f$p(\mathbf{x}_n\,|\,\mathbf{y}_{1:n})\f$;   * forward filter density.   */  virtual void smooth(const T tn, const aux::vector& ytn,      const P& p_xtn_ytn) = 0;  /**   * Apply the measurement function to the current filtered state to   * obtain an estimated measurement.   *   * @return The estimated measurement.   */  virtual aux::GaussianPdf backwardMeasure() = 0;protected:  /**   * \f$p(\mathbf{x}_n\,|\,\mathbf{y}_{n:T})\f$; backward filter density.   */  P p_xtn_ytn_b;};    }  }}template <class T, class P>indii::ml::filter::TwoFilterSmoother<T,P>::TwoFilterSmoother(const T tT,    const P& p_xT) : Smoother<T,P>(tT, p_xT), p_xtn_ytn_b(p_xT) {  //}template <class T, class P>indii::ml::filter::TwoFilterSmoother<T,P>::~TwoFilterSmoother() {  //}template <class T, class P>inline P& indii::ml::filter::TwoFilterSmoother<T,P>::getBackwardFilteredState() {  return this->p_xtn_ytn_b;}template <class T, class P>void indii::ml::filter::TwoFilterSmoother<T,P>::setBackwardFilteredState(    const P& p_xtn_ytn) {  this->p_xtn_ytn_b = p_xtn_ytn;}#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -