⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 kalmansmoothermodel.hpp

📁 dysii is a C++ library for distributed probabilistic inference and learning in large-scale dynamical
💻 HPP
字号:
#ifndef INDII_ML_FILTER_KALMANSMOOTHERMODEL_HPP#define INDII_ML_FILTER_KALMANSMOOTHERMODEL_HPP#include "KalmanFilterModel.hpp"namespace indii {  namespace ml {    namespace filter {/** * KalmanSmoother compatible model. * * @author Lawrence Murray <lawrence@indii.org> * @version $Rev: 301 $ * @date $Date: 2007-09-10 23:56:50 +0100 (Mon, 10 Sep 2007) $ * * @param T The type of time. *  * @see indii::ml::filter for general usage guidelines. */template <class T = unsigned int>class KalmanSmootherModel : virtual public KalmanFilterModel<T> {public:  /**   * Destructor.   */  virtual ~KalmanSmootherModel() = 0;  /**   * Predict previous system state.   *   * @param p_xtn_ytn \f$P\big(\mathbf{x}(t_n)\, |   * \,\mathbf{y}(t_n),\ldots,\mathbf{y}(t_T)\big)\f$; distribution   * over states at the current time given present and future   * measurements.   * @param delta \f$\Delta t\f$; time step.   *   * @return \f$P\big(\mathbf{x}(t_n - \Delta t)\, |   * \,\mathbf{y}(t_n),\ldots,\mathbf{y}(t_T)\big)\f$; predicted   * distribution over states at time \f$t_n - \Delta t\f$ given   * future measurements.   */  virtual indii::ml::aux::GaussianPdf p_xtnm1_ytn(      const indii::ml::aux::GaussianPdf& p_xtn_ytn,      const T delta) = 0;  /**   * Refine prediction of previous system state using previous   * measurement.   *   * @param p_xtnm1_ytn \f$P\big(\mathbf{x}(t_n - \Delta   * t)\,|\,\mathbf{y}(t_n),\ldots,\mathbf{y}(t_T)\big)\f$; predicted   * distribution over states at time \f$t_n - \Delta t\f$ given the   * history of measurements. Typically obtained from prior call to   * #p_xtnm1_ytn.   * @param ytnm1 \f$\mathbf{y}(t_n - \Delta t)\f$; the measurement at   * time \f$t_n - \Delta t\f$.   * @param delta \f$\Delta t\f$; time step.   *   * @return \f$P\big(\mathbf{x}(t_n - \Delta t)\, | \,\mathbf{y}(t_n   * - \Delta),\ldots,\mathbf{y}(t_T)\big)\f$; distribution over   * states at time \f$t_n - \Delta t\f$ given the present and future   * measurements.   */  virtual indii::ml::aux::GaussianPdf p_xtnm1_ytnm1(      const indii::ml::aux::GaussianPdf& p_xtnm1_ytn,      const indii::ml::aux::vector& ytnm1, const T delta) = 0;};    }  }}template <class T>indii::ml::filter::KalmanSmootherModel<T>::~KalmanSmootherModel() {  //}#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -