📄 kerneltwofiltersmoother.hpp
字号:
#ifndef INDII_ML_FILTER_KERNELTWOFILTERSMOOTHER_HPP#define INDII_ML_FILTER_KERNELTWOFILTERSMOOTHER_HPP#include "Smoother.hpp"#include "ParticleResampler.hpp"#include "KernelTwoFilterSmootherModel.hpp"#include "flags.hpp"#include "../aux/Almost2Norm.hpp"#include "../aux/AlmostGaussianKernel.hpp"#include "../aux/MedianPartitioner.hpp"namespace indii { namespace ml { namespace filter {/** * Kernel two-filter smoother. * * @author Lawrence Murray <lawrence@indii.org> * @version $Rev: 589 $ * @date $Date: 2008-12-15 17:46:51 +0000 (Mon, 15 Dec 2008) $ * * @param T The type of time. * @param NT Norm type. * @param KT Kernel type. * @param ST Partitioner type. * * @see KernelForwardBackwardSmoother for further information, and * indii::ml::filter for general usage guidelines. * * @section KernelTwoFilterSmoother_references References * * @anchor Murray2009 * Murray, L.M. (2009) Bayesian Learning of Continuous Time Dynamical Systems * (with applications in Functional Magnetic Resonance Imaging). PhD thesis. * Online at http://www.indii.org/research/. */template <class T = unsigned int, class NT = indii::ml::aux::Almost2Norm, class KT = indii::ml::aux::AlmostGaussianKernel, class ST = indii::ml::aux::MedianPartitioner>class KernelTwoFilterSmoother : public Smoother<T,indii::ml::aux::DiracMixturePdf> {public: /** * Constructor, with measurement at starting time. * * @param model Model to estimate. * @param N The kernel density norm. * @param K The kernel density kernel. * @param tT \f$t_T\f$; starting time. * @param p_xT \f$p(\mathbf{x}_T)\f$; prior over the state at time * \f$t_T\f$. * @param ytT \f$\mathbf{y}_T\f$; measurement at time \f$t_T\f$. * @param flags Optimisation flags for calculation of the initial * backward likelihood. Only NO_STANDARDISATION is relevant here. */ KernelTwoFilterSmoother(KernelTwoFilterSmootherModel<T>* model, const NT& N, const KT& K, const T tT, const indii::ml::aux::DiracMixturePdf& p_xT, const indii::ml::aux::vector& ytT, const unsigned int flags = 0); /** * Constructor, without measurement at starting time. * * @param model Model to estimate. * @param N The kernel density norm. * @param K The kernel density kernel. * @param tT \f$t_T\f$; starting time. * @param p_xT \f$p(\mathbf{x}_T)\f$; prior over the state at time * \f$t_T\f$. * @param flags Optimisation flags for calculation of the initial * backward likelihood. Only NO_STANDARDISATION is relevant here. */ KernelTwoFilterSmoother(KernelTwoFilterSmootherModel<T>* model, const NT& N, const KT& K, const T tT, const indii::ml::aux::DiracMixturePdf& p_xT, const unsigned int flags = 0); /** * Destructor. */ virtual ~KernelTwoFilterSmoother(); /** * Get the model. * * @return The model. */ virtual KernelTwoFilterSmootherModel<T>* getModel(); /** * Step back in time and smooth, with measurement. * * @param tn \f$t_n\f$; the time to which to rewind the system. This must * be less than the current time \f$t_{n+1}\f$. * @param ytn \f$\mathbf{y}_n\f$; the measurement at time \f$t_n\f$. * @param p_xtn_ytnm1 \f$p(\mathbf{x}_n\,|\,\mathbf{y}_{1:n-1})\f$; * the uncorrected %filter density at time \f$t_n\f$. * @param q_xtn \f$q(\mathbf{x}_n)\f$; proposal distribution for * importance sampling of the smooth density at time \f$t_n\f$. * @param flags Optimisation flags. */ void smooth(const T tn, const indii::ml::aux::vector& ytn, indii::ml::aux::DiracMixturePdf& p_xtn_ytnm1, indii::ml::aux::Pdf& q_xtn, const unsigned int flags = 0); /** * Step back in time and smooth, without measurement. * * @param tn \f$t_n\f$; the time to which to rewind the system. This must * be less than the current time \f$t_{n+1}\f$. * @param p_xtn_ytnm1 \f$p(\mathbf{x}_n\,|\,\mathbf{y}_{1:n-1})\f$; * the uncorrected %filter density at time \f$t_n\f$. * @param q_xtn \f$q(\mathbf{x}_n)\f$; proposal distribution for * importance sampling of the smooth density at time \f$t_n\f$. * @param flags Optimisation flags. */ void smooth(const T tn, indii::ml::aux::DiracMixturePdf& p_xtn_ytnm1, indii::ml::aux::Pdf& q_xtn, const unsigned int flags = 0); /** * Step back in time and smooth, with measurement, and uncorrected * filter density as proposal distribution. * * @param tn \f$t_n\f$; the time to which to rewind the system. This must * be less than the current time \f$t_{n+1}\f$. * @param ytn \f$\mathbf{y}_n\f$; the measurement at time \f$t_n\f$. * @param p_xtn_ytnm1 \f$p(\mathbf{x}_n\,|\,\mathbf{y}_{1:n-1})\f$; * the uncorrected %filter density at time \f$t_n\f$. * @param flags Optimisation flags. */ void smooth(const T tn, const indii::ml::aux::vector& ytn, indii::ml::aux::DiracMixturePdf& p_xtn_ytnm1, const unsigned int flags = 0); /** * Step back in time and smooth, without measurement, and uncorrected * filter density as proposal distribution. * * @param tn \f$t_n\f$; the time to which to rewind the system. This must * be less than the current time \f$t_{n+1}\f$. * @param p_xtn_ytnm1 \f$p(\mathbf{x}_n\,|\,\mathbf{y}_{1:n-1})\f$; * the uncorrected %filter density at time \f$t_n\f$. * @param flags Optimisation flags. */ void smooth(const T tn, indii::ml::aux::DiracMixturePdf& p_xtn_ytnm1, const unsigned int flags = 0); virtual indii::ml::aux::DiracMixturePdf smoothedMeasure(); /** * Resample the smoothed state. * * @see ParticleFilter::resample() */ void smoothedResample(ParticleResampler* resampler);private: /** * Model. */ KernelTwoFilterSmootherModel<T>* model; /** * \f$\|\mathbf{x}\|_p\f$; the norm. */ NT N; /** * \f$K(\|\mathbf{x}\|_p) \f$; the density kernel. */ KT K; /** * Number of samples to use. */ unsigned int P; /** * Proposal distribution samples. */ indii::ml::aux::DiracMixturePdf q_xtns; /** * Proposal distribution sample densities. */ indii::ml::aux::vector q_ptns; /** * Proposal distribution sample propagations. */ indii::ml::aux::DiracMixturePdf q_xtnp1s; /** * Time difference for last proposal sample propagations. */ T q_delta; /** * \f$p(\mathbf{y}_{n:T}\,|\,\mathbf{x}_n)\f$; backward likelihood. */ DiracMixturePdf p_ytn_xtn; }; } }}#include "StratifiedParticleResampler.hpp"#include "../aux/kde.hpp"#include <assert.h>template <class T, class NT, class KT, class ST>indii::ml::filter::KernelTwoFilterSmoother<T,NT,KT,ST>::KernelTwoFilterSmoother( KernelTwoFilterSmootherModel<T>* model, const NT& N, const KT& K, const T tT, const indii::ml::aux::DiracMixturePdf& p_xT, const indii::ml::aux::vector& ytT, const unsigned int flags) : Smoother<T,indii::ml::aux::DiracMixturePdf>(tT, p_xT), model(model), N(N), K(K), q_xtns(model->getStateSize()), q_xtnp1s(model->getStateSize()), p_ytn_xtn(p_xT) { namespace aux = indii::ml::aux; unsigned int i; P = p_xT.getDistributedSize(); /* initialise backward likelihood */ aux::vector ws(p_ytn_xtn.getSize()); if (flags & NO_STANDARDISATION) { aux::KDTree<ST> tree(&p_ytn_xtn); noalias(ws) = aux::distributedSelfTreeDensity(tree, p_ytn_xtn.getWeights(), N, K); } else { aux::DiracMixturePdf q(p_ytn_xtn); q.distributedStandardise(); aux::KDTree<ST> tree(&q); noalias(ws) = aux::distributedSelfTreeDensity(tree, q.getWeights(), N, K); } for (i = 0; i < p_ytn_xtn.getSize(); i++) { ws(i) /= model->weight(p_ytn_xtn.get(i), ytT); } p_ytn_xtn.setWeights(element_div(p_ytn_xtn.getWeights(), ws));}template <class T, class NT, class KT, class ST>indii::ml::filter::KernelTwoFilterSmoother<T,NT,KT,ST>::KernelTwoFilterSmoother( KernelTwoFilterSmootherModel<T>* model, const NT& N, const KT& K, const T tT, const indii::ml::aux::DiracMixturePdf& p_xT, const unsigned int flags) : Smoother<T,indii::ml::aux::DiracMixturePdf>(tT, p_xT), model(model), N(N), K(K), q_xtns(model->getStateSize()), q_xtnp1s(model->getStateSize()), p_ytn_xtn(p_xT) { namespace aux = indii::ml::aux; unsigned int i; P = p_xT.getDistributedSize(); /* initialise backward likelihood */ aux::vector ws(p_ytn_xtn.getSize()); if (flags & NO_STANDARDISATION) { aux::KDTree<ST> tree(&p_ytn_xtn); noalias(ws) = aux::distributedSelfTreeDensity(tree, p_ytn_xtn.getWeights(), N, K); } else { aux::DiracMixturePdf q(p_ytn_xtn); q.distributedStandardise(); aux::KDTree<ST> tree(&q); noalias(ws) = aux::distributedSelfTreeDensity(tree, q.getWeights(), N, K); } p_ytn_xtn.setWeights(element_div(p_ytn_xtn.getWeights(), ws));}template <class T, class NT, class KT, class ST>indii::ml::filter::KernelTwoFilterSmoother<T,NT,KT,ST>::~KernelTwoFilterSmoother() { //}template <class T, class NT, class KT, class ST>indii::ml::filter::KernelTwoFilterSmootherModel<T>* indii::ml::filter::KernelTwoFilterSmoother<T,NT,KT,ST>::getModel() {
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -