📄 stochasticadaptiveeulermaruyamaharness.cpp
字号:
#include "DoubleWell.hpp"#include "indii/ml/sde/StochasticAdaptiveEulerMaruyama.hpp"#include <iostream>#include <fstream>namespace aux = indii::ml::aux;/** * @file StochasticAdaptiveEulerMaruyamaHarness.cpp * * Test of StochasticAdaptiveEulerMaruyama with DoubleWell model. * * This test simulates a number of trajectories from DoubleWell using * indii::ml::sde::StochasticAdaptiveEulerMaruyama, plotting each. * * Results are as follows: * * \image html StochasticAdaptiveEulerMaruyamaHarness.png "Results" * \image latex StochasticAdaptiveEulerMaruyamaHarness.eps "Results" *//** * Dimensionality of the process. */const unsigned int M = 1;/** * Number of sample trajectories. */const unsigned int N = 1;/** * Time length of each trajectory. */const double LENGTH = 600.0;/** * Run tests. */int main(int argc, const char* argv[]) { double t; aux::vector y(M); unsigned int i; std::ofstream fout("results/StochasticAdaptiveEulerMaruyamaHarness.out"); DoubleWell model; indii::ml::sde::StochasticAdaptiveEulerMaruyama<> solver(&model); solver.setErrorBounds(1.0e-3, 1.0e-2); for (i = 0; i < N; i++) { t = 0.0; y(0) = aux::Random::uniform(-1.0, 1.0); solver.setTime(t); solver.setState(y); solver.setStepSize(1.0e-4); while (t < LENGTH) { t = solver.step(LENGTH); y = solver.getState(); fout << t << '\t' << y(0) << std::endl; } fout << std::endl; } return 0;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -