📄 test11.cpp
字号:
#include "indii/ml/aux/GaussianMixturePdf.hpp"#include "indii/ml/aux/GaussianPdf.hpp"#include "indii/ml/aux/KernelDensityMixturePdf.hpp"#include "indii/ml/aux/DiracMixturePdf.hpp"#include "indii/ml/aux/Random.hpp"#include "indii/ml/aux/kde.hpp"#include <gsl/gsl_statistics_double.h>#include <iostream>#include <fstream>using namespace std;namespace aux = indii::ml::aux;/** * @file test11.cpp * * Test of KernelDensityMixturePdf. * * This test: * * @li creates a random multivariate Gaussian mixture, * @li samples from this mixture and constructs a \f$kd\f$ tree, * @li Constructs a KernelDensityPdf approximation of the original Gaussian * mixture from this \f$kd\f$ tree. * * Results are as follows: * * @include test11.out *//** * Dimensionality of the distribution. */unsigned int M = 2;/** * Number of components in the Gaussian mixture. */unsigned int COMPONENTS = 4;/** * Number of samples to take. */unsigned int P = 1000;/** * Resolution of plots. */unsigned int RES = 200;/** * Bandwidth. */double H = 0.25 * aux::hopt(M,P);/** * Create random Gaussian distribution. * * @param M Dimensionality of the Gaussian. * @param minMean Minimum value of any component of the mean. * @param maxMean Maximum value of any component of the mean. * @param minCov Minimum value of any component of the covariance. * @param maxCov Maximum value of any component of the covariance. * * @return Gaussian with given dimensionality, with mean and * covariance randomly generated uniformly from within the given * bounds. */aux::GaussianPdf createRandomGaussian(const unsigned int M, const double minMean = -1.0, const double maxMean = 1.0, const double minCov = -1.0, const double maxCov = 1.0) { aux::vector mu(M); aux::symmetric_matrix sigma(M); aux::lower_triangular_matrix L(M,M); unsigned int i, j; /* mean */ for (i = 0; i < M; i++) { mu(i) = aux::Random::uniform(minMean, maxMean); } /* covariance */ for (i = 0; i < M; i++) { for (j = 0; j <= i; j++) { L(i,j) = aux::Random::gaussian((maxCov + minCov) / 2.0, (maxCov - minCov) / 2.0); } } sigma = prod(L, trans(L)); // ensures cholesky decomposable return aux::GaussianPdf(mu, sigma);}/** * Run tests. */int main(int argc, char* argv[]) { /* mpi */ boost::mpi::environment env(argc, argv); boost::mpi::communicator world; unsigned int rank = world.rank(); unsigned int size = world.size(); //int seed = static_cast<int>(aux::Random::uniform(0, 1000000)); //std::cerr << "seed = " << seed << std::endl; //aux::Random::seed(seed); //aux::Random::seed(781634 + rank); unsigned int i; /* create distribution and broadcast */ aux::GaussianMixturePdf mixture(M); if (rank == 0) { for (i = 0; i < COMPONENTS; i++) { mixture.add(createRandomGaussian(M), aux::Random::uniform(0.5,1.0)); } } boost::mpi::broadcast(world, mixture, 0); /* sample from distribution */ aux::DiracMixturePdf mixtureSamples(mixture, P / size); mixtureSamples.redistributeBySpace(); /* construct kd tree */ aux::KDTree<> tree(&mixtureSamples); aux::Almost2Norm N; aux::AlmostGaussianKernel K(M,H); aux::KernelDensityPdf<> kd(&tree, N, K); aux::KernelDensityMixturePdf<> kdMixture(kd, mixtureSamples.getTotalWeight()); /* sample from kernel density mixture */ std::vector<aux::vector> xs = kdMixture.distributedSample(P); aux::DiracMixturePdf kdSamples(M); for (i = 0; i < xs.size(); i++) { kdSamples.add(xs[i]); } /* importance sample from kernel density */ aux::GaussianPdf importance(mixture.getExpectation(), mixture.getCovariance()); aux::DiracMixturePdf kdImportanceSamples(M), querySamples(M); for (i = 0; i < P / size; i++) { querySamples.add(importance.sample()); } querySamples.redistributeBySpace(); aux::KDTree<aux::MedianPartitioner> queryTree(&querySamples); aux::vector kdDensities(kdMixture.distributedDensityAt(queryTree)); //noalias(kdDensities) = kdMixture.distributedDensityAt(samples); for (i = 0; i < querySamples.getSize(); i++) { kdImportanceSamples.add(querySamples.get(i), kdDensities(i) / importance.densityAt(querySamples.get(i))); } if (rank == 0) { cout << "Mixture mean" << endl << mixture.getExpectation() << endl; cout << "Mixture covariance" << endl << mixture.getCovariance() << endl; cout << "Sample mean" << endl << mixtureSamples.getDistributedExpectation() << endl; cout << "Sample covariance" << endl << mixtureSamples.getDistributedCovariance() << endl; cout << "Kernel density mixture mean" << endl << kdMixture.getDistributedExpectation() << endl; cout << "Kernel density mixture covariance" << endl << kdMixture.getDistributedCovariance() << endl; cout << "Kernel density mixture sample mean" << endl << kdSamples.getDistributedExpectation() << endl; cout << "Kernel density mixture sample covariance" << endl << kdSamples.getDistributedCovariance() << endl; cout << "Kernel density mixture importance sample mean" << endl << kdImportanceSamples.getDistributedExpectation() << endl; cout << "Kernel density mixture importance sample covariance" << endl << kdImportanceSamples.getDistributedCovariance() << endl; } else { mixtureSamples.getDistributedExpectation(); mixtureSamples.getDistributedCovariance(); kdMixture.getDistributedExpectation(); kdMixture.getDistributedCovariance(); kdSamples.getDistributedExpectation(); kdSamples.getDistributedCovariance(); kdImportanceSamples.getDistributedExpectation(); kdImportanceSamples.getDistributedCovariance(); } return 0; }
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -