⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 test2.cpp

📁 dysii is a C++ library for distributed probabilistic inference and learning in large-scale dynamical
💻 CPP
字号:
#include "indii/ml/aux/GaussianPdf.hpp"#include "indii/ml/aux/vector.hpp"#include "indii/ml/aux/matrix.hpp"#include "indii/ml/aux/Random.hpp"#include <gsl/gsl_statistics_double.h>#include <iostream>using namespace std;namespace aux = indii::ml::aux;/** * @file test2.cpp * * Multivariate test of GaussianPdf. * * This test creates a multivariate Gaussian with a random mean and * covariance. It then samples from this distribution and calculates * the sample mean and variance for comparison. * * Results are as follows: * * @include test2.out *//** * Dimensionality of the Gaussian. */unsigned int M = 10;/** * Number of samples to take. */unsigned int N = 100000;/** * Run tests. */int main(int argc, const char* argv[]) {  aux::vector mu(M);  // true mean  aux::symmetric_matrix sigma(M);  // true covariance  aux::lower_triangular_matrix tmp(M,M);  // to construct Cholesky decomp sigma  aux::vector smu(M);  // sample mean  aux::symmetric_matrix ssigma(M);  // sample covariance  aux::vector sample(M);  double data[M][N];  unsigned int i, j;  /* set up distribution */  for (i = 0; i < M; i++) {    mu(i) = aux::Random::uniform(-5.0, 5.0);  }  for (i = 0; i < M; i++) {    for (j = 0; j <= i; j++) {      tmp(i,j) = aux::Random::uniform(0.0, 5.0);    }  }  noalias(sigma) = prod(tmp, trans(tmp)); // ensures cholesky decomposition  aux::GaussianPdf pdf(mu, sigma);  /* sample from distribution */  for (i = 0; i < N; i++) {    sample = pdf.sample();    for (j = 0; j < M; j++) {      data[j][i] = sample(j);    }  }  /* calculate mean and variance of samples */  for (i = 0; i < M; i++) {    smu(i) = gsl_stats_mean(data[i], 1, N);  }  for (i = 0; i < M; i++) {    for (j = 0; j < M; j++) {      ssigma(i,j) = gsl_stats_covariance(data[i], 1, data[j], 1, N);    }  }  cout << "True mean" << endl << mu << endl;  cout << "True covariance" << endl << sigma << endl;  cout << "Sample mean" << endl << smu << endl;  cout << "Sample covariance" << endl << ssigma << endl;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -