⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 rauchtungstriebelharness.cpp

📁 dysii is a C++ library for distributed probabilistic inference and learning in large-scale dynamical
💻 CPP
字号:
#include "indii/ml/filter/KalmanFilter.hpp"#include "indii/ml/filter/RauchTungStriebelSmoother.hpp"#include "indii/ml/filter/LinearModel.hpp"#include "MobileRobot.hpp"#include <math.h>#include <iostream>#include <fstream>#include <stack>#define STATE_SIZE 5#define MEAS_SIZE 1#define ACTUAL_SIZE 3#define STEPS 100using namespace std;using namespace indii::ml::filter;namespace aux = indii::ml::aux;namespace ublas = boost::numeric::ublas;/** * @file RauchTungStriebelHarness.cpp * * Basic test of RauchTungStriebelSmoother. * * This test sets up a linear model for testing the * Rauch-Tung-Striebel (RTS) smoother implementation. It may be * validated against the Kalman filter and kalman smoother results. * * Results are output into files as follows: * * @section actualRTS results/RauchTungStriebelHarness_actual.out * * Actual state of the robot at each time. Columns are as follows: * * @li time * @li x coordinate * @li y coordinate * @li orientation (radians) * * @section measRTS results/RauchTungStriebelHarness_meas.out *  * Measurement at each time step. Columns are as follows: * * @li time * @li measurement * * @section filterRTS results/RauchTungStriebelHarness_filter.out * * Predicted state (filtered) at each time step. Columns are as follows: * * @li time * @li mean x coordinate * @li mean y coordinate * @li mean orientation * @li The remaining columns give the covariance matrix between the above * state variables. * * @section smoothRTS results/RauchTungStriebelHarness_smooth.out * * Predicted state (smoothed) at each time step. Columns are as follows: * * @li time * @li mean x coordinate * @li mean y coordinate * @li mean orientation * @li The remaining columns give the covariance matrix between the above * state variables. * * Note that as the smoothing is performed in a backwards pass, this file has * entries in reverse time order. * * @section resultsRTS Results * * Results are as follows: * * \image html RauchTungStriebelHarness.png "Results" * \image latex RauchTungStriebelHarness.eps "Results" */void outputVector(ofstream& out, aux::vector vec);void outputMatrix(ofstream& out, aux::matrix mat);/** * Run tests */int main(int argc, const char* argv) {  /* define model */  aux::matrix A(STATE_SIZE,STATE_SIZE);  aux::matrix G(STATE_SIZE,STATE_SIZE);  aux::matrix C(MEAS_SIZE,STATE_SIZE);  aux::symmetric_matrix Q(STATE_SIZE);  aux::symmetric_matrix R(MEAS_SIZE);  A.clear();  A(0,0) = 1.0;  A(0,3) = cos(0.8);  A(1,1) = 1.0;  A(1,3) = sin(0.8);  A(2,2) = 1.0;  A(3,3) = 1.0;  A(4,4) = 1.0;  G.clear();  G(0,0) = 1.0;  G(1,1) = 1.0;  Q.clear();  Q(0,0) = pow(0.01, 2.0);  Q(1,1) = pow(0.01, 2.0);  /* next three just so that Q is Cholesky decomposible, are zeroed by G */  Q(2,2) = 1.0;  Q(3,3) = 1.0;  Q(4,4) = 1.0;  C.clear();  C(0,1) = 2.0;  R.clear();  R(0,0) = pow(0.05,2.0);    LinearModel model(A, G, Q, C, R);  /* initial state */  aux::vector mu(STATE_SIZE);  aux::symmetric_matrix sigma(STATE_SIZE);  mu.clear();  mu(0) = -1.0;  mu(1) = 1.0;  mu(2) = 0.8;  mu(3) = 0.1;  mu(4) = 0.0;  sigma.clear();  sigma(0,0) = 1.0;  sigma(1,1) = 1.0;  sigma(2,2) = 0.1;  sigma(3,3) = 0.1;  sigma(4,4) = 0.1;  aux::GaussianPdf x0(mu, sigma);  /* create smoother */  KalmanFilter<unsigned int> filter(&model, x0);  /* set up robot simulator */  MobileRobot robot(0.1, 5e-3);  /* estimate and output results */  stack<aux::GaussianPdf> filteredStates;  aux::vector meas(MEAS_SIZE);  aux::vector actual(ACTUAL_SIZE);  aux::GaussianPdf pred(STATE_SIZE);  unsigned int t = 0;  ofstream fmeas("results/RauchTungStriebelHarness_meas.out");  ofstream factual("results/RauchTungStriebelHarness_actual.out");  ofstream ffilter("results/RauchTungStriebelHarness_filter.out");  ofstream fsmooth("results/RauchTungStriebelHarness_smooth.out");  /* output initial state */  actual = robot.getState();  pred = filter.getFilteredState();  filteredStates.push(pred);  cerr << t << ' ';  factual << t << '\t';  outputVector(factual, actual);  factual << endl;  ffilter << t << '\t';  outputVector(ffilter, pred.getExpectation());  ffilter << '\t';  outputMatrix(ffilter, pred.getCovariance());  ffilter << endl;  /* filter */  for (t = 1; t <= STEPS; t++) {    robot.move();    meas = robot.measure();    filter.filter(t, meas);    pred = filter.getFilteredState();    filteredStates.push(pred);    actual = robot.getState();    cerr << t << ' ';    /* output measurement */    fmeas << t << '\t';    outputVector(fmeas, meas);    fmeas << endl;    /* output actual state */    factual << t << '\t';    outputVector(factual, actual);    factual << endl;    /* output filtered state */    ffilter << t << '\t';    outputVector(ffilter, pred.getExpectation());    ffilter << '\t';    outputMatrix(ffilter, pred.getCovariance());    ffilter << endl;  }  /* smooth */  t--;  pred = filter.getFilteredState();  RauchTungStriebelSmoother<unsigned int> smoother(&model, t, pred);  cerr << t << ' ';  fsmooth << t << '\t';  outputVector(fsmooth, pred.getExpectation());  fsmooth << '\t';  outputMatrix(fsmooth, pred.getCovariance());  fsmooth << endl;  for (t = STEPS - 1; t >= 1; t--) {    smoother.smooth(t - 1, filteredStates.top());    filteredStates.pop();    pred = smoother.getSmoothedState();    cerr << t << ' ';    /* output filtered state */    fsmooth << t << '\t';    outputVector(fsmooth, pred.getExpectation());    fsmooth << '\t';    outputMatrix(fsmooth, pred.getCovariance());    fsmooth << endl;  }  fmeas.close();  factual.close();  ffilter.close();  fsmooth.close();  return 0;}void outputVector(ofstream& out, aux::vector vec) {  aux::vector::iterator iter, end;  iter = vec.begin();  end = vec.end();  while (iter != end) {    out << *iter;    iter++;    if (iter != end) {      out << '\t';    }  }}void outputMatrix(ofstream& out, aux::matrix mat) {  unsigned int i, j;  for (j = 0; j < mat.size2(); j++) {    for (i = 0; i < mat.size1(); i++) {      out << mat(i,j);      if (i != mat.size1() - 1 || j != mat.size2() - 1) {	out << '\t';      }    }  }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -