📄 particlesmootherharness.cpp
字号:
#include "indii/ml/filter/ParticleFilter.hpp"#include "indii/ml/filter/ParticleSmoother.hpp"#include "indii/ml/filter/StratifiedParticleResampler.hpp"#include "indii/ml/aux/Random.hpp"#include "MobileRobotParticleFilterModel.hpp"#include "MobileRobot.hpp"#include <math.h>#include <iostream>#include <fstream>#include <vector>#include <stack>#define SYSTEM_SIZE 2#define MEAS_SIZE 1#define ACTUAL_SIZE 3#define T 250#define P 250using namespace std;using namespace indii::ml::filter;namespace aux = indii::ml::aux;/** * @file ParticleSmootherHarness.cpp * * Basic test of ParticleSmoother. * * Results are output into files as follows: * * @section actualPS results/ParticleSmootherHarness_actual.out * * Actual state of the robot at each time. Columns are as follows: * * @li time * @li x coordinate * @li y coordinate * @li orientation (radians) * * @section measPS results/ParticleSmootherHarness_meas.out * * Measurement at each time step. Columns are as follows: * * @li time * @li measurement * * @section filterPS results/ParticleSmootherHarness_filter.out * * Predicted state at each time step. Columns are as follows: * * @li time * @li mean x coordinate * @li mean y coordinate * @li mean orientation * @li The remaining columns give the covariance matrix between the above * state variables. * * @section smoothPS results/ParticleSmootherHarness_smooth.out * * Predicted state (smoothed) at each time step. Columns are as follows: * * @li time * @li mean x coordinate * @li mean y coordinate * @li mean orientation * @li The remaining columns give the covariance matrix between the above * state variables. * * Note that as the smoothing is performed in a backwards pass, this file has * entries in reverse time order. * * @section resultsPS Results * * Results are as follows: * * \image html ParticleSmootherHarness.png "Results" * \image latex ParticleSmootherHarness.eps "Results" */void outputVector(ofstream& out, aux::vector vec);void outputMatrix(ofstream& out, aux::matrix mat);/** * Run tests */int main(int argc, char* argv[]) { boost::mpi::environment env(argc, argv); boost::mpi::communicator world; const unsigned int rank = world.rank(); const unsigned int size = world.size(); aux::Random::seed(rank); /* set up robot simulator */ MobileRobot robot(0.1, 5.0e-3); /* define model */ MobileRobotParticleFilterModel model(0.1, 5.0e-3); aux::GaussianPdf prior(model.suggestPrior()); aux::DiracMixturePdf x0(prior, P / size); /* create filter */ ParticleFilter<unsigned int> filter(&model, x0); /* create resampler */ StratifiedParticleResampler resampler(P); /* estimate and output results */ stack<aux::DiracMixturePdf> filteredStates; aux::vector meas(MEAS_SIZE); aux::vector actual(ACTUAL_SIZE); aux::DiracMixturePdf pred(SYSTEM_SIZE); unsigned int t = 0; ofstream fmeas("results/ParticleSmootherHarness_meas.out"); ofstream factual("results/ParticleSmootherHarness_actual.out"); ofstream ffilter("results/ParticleSmootherHarness_filter.out"); ofstream fsmooth("results/ParticleSmootherHarness_smooth.out"); aux::vector mu(SYSTEM_SIZE); aux::symmetric_matrix sigma(SYSTEM_SIZE); /* output initial state */ pred = filter.getFilteredState(); actual = robot.getState(); mu = pred.getDistributedExpectation(); sigma = pred.getDistributedCovariance(); if (rank == 0) { cerr << t << ' '; factual << t << '\t'; outputVector(factual, actual); factual << endl; ffilter << t << '\t'; outputVector(ffilter, mu); ffilter << '\t'; outputMatrix(ffilter, sigma); ffilter << endl; } for (t = 1; t <= T; t++) { if (rank == 0) { robot.move(); meas = robot.measure(); } boost::mpi::broadcast(world, meas, 0); if (filter.getFilteredState().calculateDistributedEss() < 0.8*P) { filter.resample(&resampler); } filter.filter(t, meas); pred = filter.getFilteredState(); actual = robot.getState(); mu = pred.getDistributedExpectation(); sigma = pred.getDistributedCovariance(); filteredStates.push(pred); if (rank == 0) { cerr << t << ' '; /* output measurement */ fmeas << t << '\t'; outputVector(fmeas, meas); fmeas << endl; /* output actual state */ factual << t << '\t'; outputVector(factual, actual); factual << endl; /* output filtered state */ ffilter << t << '\t'; outputVector(ffilter, mu); ffilter << '\t'; outputMatrix(ffilter, sigma); ffilter << endl; } } /* smooth */ t--; pred = filter.getFilteredState(); ParticleSmoother<unsigned int> smoother(&model, t, pred); mu = pred.getDistributedExpectation(); sigma = pred.getDistributedCovariance(); if (rank == 0) { cerr << t << ' '; fsmooth << t << '\t'; outputVector(fsmooth, mu); fsmooth << '\t'; outputMatrix(fsmooth, sigma); fsmooth << endl; } filteredStates.pop(); for (t = T - 1; t >= 1; t--) { smoother.smooth(t, filteredStates.top()); filteredStates.pop(); pred = smoother.getSmoothedState(); mu = pred.getDistributedExpectation(); sigma = pred.getDistributedCovariance(); if (rank == 0) { cerr << t << ' '; /* output smoothed state */ fsmooth << t << '\t'; outputVector(fsmooth, mu); fsmooth << '\t'; outputMatrix(fsmooth, sigma); fsmooth << endl; } } fmeas.close(); factual.close(); ffilter.close(); fsmooth.close(); return 0;}void outputVector(ofstream& out, aux::vector vec) { aux::vector::iterator iter, end; iter = vec.begin(); end = vec.end(); while (iter != end) { out << *iter; iter++; if (iter != end) { out << '\t'; } }}void outputMatrix(ofstream& out, aux::matrix mat) { unsigned int i, j; for (j = 0; j < mat.size2(); j++) { for (i = 0; i < mat.size1(); i++) { out << mat(i,j); if (i != mat.size1() - 1 || j != mat.size2() - 1) { out << '\t'; } } }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -