📄 householderhessenbergreduction.java
字号:
package org.jutil.math.matrix;/** * This class represents a HouseHolder Hessenberg factorization of a matrix. * * @path $Source: /cvsroot/org-jutil/jutil.org/src/org/jutil/math/matrix/HouseholderHessenbergReduction.java,v $ * @version $Revision: 1.5 $ * @date $Date: 2002/07/02 14:27:31 $ * @state $State: Exp $ * @author Marko van Dooren * @release $Name: $ */public class HouseholderHessenbergReduction implements HessenbergReduction { /* The revision of this class */ public final static String CVS_REVISION ="$Revision: 1.5 $"; /** * Initialize a new HouseholderHessenbergReduction combination with the given * H matrix and v vectors. * * @param H * The H matrix of the Hessenberg reduction. * @param vs * An array of v vectors produce by the HouseHolder factorization * The first vector of the algorithm is at position -, the last * vector is at position vs.length - 1 */ /*@ @ public behavior @ @ pre H != null; @ pre H.isSquare(); @ // TODO: pre H.isHessenberg(); @ pre vs != null; @ pre vs.length == H.getNbColumns() - 2; @ pre (\forall int i; i>=0 && i<vs.length; @ (vs[i] != null) && @ (vs[i].size() == H.getNbRows() - i - 1)); @ @ post H().equals(H); @ post (\forall int i; i>=1 && i<= vs.length; @ getV(i).equals(vs[i-1])); @*/ public HouseholderHessenbergReduction(Matrix H, Column[] vs) { _H=(Matrix)H.clone(); _vectors = new Column[vs.length]; for (int i=0; i<_vectors.length; i++) { _vectors[i] = (Column) vs[i].clone(); } } /** * See superclass */ public Matrix H() { return (Matrix)_H.clone(); } /** * <p>Return the i-th v vector as computed by the Householder * algorithm that computed this Hessenberg decomposition.</p> * * @param i * <p>The index of the requested v vector. * Indices start from 1.</p> */ /*@ @ public behavior @ @ pre i>=1; @ pre i<=H().getNbColumns() - 2; @ @ post \result != null; @*/ public Column getV(int i) { return (Column) _vectors[i-1]; } /** * See superclass */ public Matrix Q() { int m=_H.getNbRows(); Matrix result = new Matrix(m,m); for (int i=1; i <= m; i++) { result.setColumn(i, Qcolumn(i)); } return result; } /** * Return a the i-th column of Q. * * @param i * The index of the requested column. */ /*@ @ private behavior @ @ pre i >= 1 && i <= H().getNbRows(); @ @ post \result != null; @ post \result.getNbRows() == H().getNbRows(); @ post (* \result == i-th column of Q *); @*/ private Column Qcolumn(int i) { Column unity = new Column(_H.getNbRows()); unity.setElementAt(i,1); return Qtimes(unity); } /** * See superclass */ public Column Qtimes(Column column) { Column x = (Column)column.clone(); int m = x.size(); int n = _H.getNbColumns(); int amount = n-2; for (int k=amount; k>= 1; k--) { Column vk = _vectors[k-1]; //vk.size() = m - k Column xkm = x.subColumn(k+1,m); // xkm.size() == m - k Matrix temp = vk.times(vk.returnTranspose().times(xkm)); temp.multiply(2); xkm.subtract(temp); x.setSubColumn(k+1, xkm); } return x; } /** * See superclass */ public Column QtransposeTimes(Column column) { Column b = (Column)column.clone(); int m = column.size(); int n = _H.getNbColumns(); int amount = n - 2; for (int k=1; k<= amount; k++) { Column vk = _vectors[k-1]; Column bkm = b.subColumn(k+1,m); Matrix temp = vk.times(vk.returnTranspose().times(bkm)); temp.multiply(2); bkm.subtract(temp); b.setSubColumn(k+1, bkm); } return b; } /** * The R matrix of this QR factorization. */ /*@ @ private invariant _H != null; @ private invariant _H.isSquare(); @ // TODO: private invariant _H.isHessenberg(); @*/ private Matrix _H; /** * The v vectors produced by the HouseHolder triangularization. */ /*@ @ private invariant _vectors != null; @ private invariant (\forall int i; i>=0 && i<_vectors.length; @ _vectors[i] != null && @ _vectors[i].size() == _H.getNbColumns() - i - 1); @*/ private Column[] _vectors;}/*<copyright>Copyright (C) 1997-2001. This software is copyrighted by the people and entities mentioned after the "@author" tags above, on behalf of the JUTIL.ORG Project. The copyright is dated by the dates after the "@date" tags above. All rights reserved.This software is published under the terms of the JUTIL.ORG SoftwareLicense version 1.1 or later, a copy of which has been included withthis distribution in the LICENSE file, which can also be found athttp://www.jutil.org/LICENSE. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the JUTIL.ORG Software License for more details.For more information, please see http://jutil.org/</copyright>*/
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -