📄 2440loader.c
字号:
//
// Copyright (c) Microsoft Corporation. All rights reserved.
//
//
// Use of this source code is subject to the terms of the Microsoft end-user
// license agreement (EULA) under which you licensed this SOFTWARE PRODUCT.
// If you did not accept the terms of the EULA, you are not authorized to use
// this source code. For a copy of the EULA, please see the LICENSE.RTF on your
// install media.
//
/*++
THIS CODE AND INFORMATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF
ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
PARTICULAR PURPOSE.
--*/
/************************************************
* NAME : 2440loader.C *
* DESC : *
* History : 2002.02.25 ver 0.0 *
* : Modified for SMDK2440 PPC2003 BSP ( November 29, 2003 ) -> HMSEO
************************************************/
#include <stdlib.h>
#include <string.h>
#include "option.h"
#include "def.h"
#include "2440addr.h"
#include "2440lib.h"
#include "2440slib.h"
#include "2440addr.h"
#include "nand.h"
#include "..\inc\loader.h"
#define SIGN_ON "\nWinCE NAND Boot v1.00\n" __DATE__ " " __TIME__ "\n"
// HMSEO : Please check UUID memory location from inc\drv_glob.h file.
unsigned char * pbUUID = ((unsigned char *) (0x30030000 + 0x4608));
//
// Globals
//
DWORD JumpAddr;
DWORD ReadImageFromNand(DWORD dwEntry, DWORD dwSig);
void Main(void)
{
DWORD err; //, t0 = 0;
int i;
// By default, we launch image CE image. If you want to launch
// Eboot, you need to hold down APP4 button (sw803) when it boots.
DWORD dwEntry = 1;
#if 0 // The bootloader's FCLK is 400MHz, it takes 1.3V
//////////////////////////////////////////////
// D4 D3 D2 D1 D0
// 0 1 0 0 0 // 1.35V
// 0 1 0 0 1 // 1.30V
// 0 1 0 1 0 // 1.25V
// 0 1 0 1 1 // 1.20V
// 0 1 1 0 0 // 1.15V
// 0 1 1 0 1 // 1.10V
// 0 1 1 1 0 // 1.05V
// 0 1 1 1 1 // 1.00V
// 1 0 0 0 1 // 0.95V
// 1 0 0 1 1 // 0.90V
// 1 0 1 0 1 // 0.85V
// 1 0 1 1 1 // 0.80V
rGPBDAT=(rGPBDAT&0x77f)|(0<<7); //D4
rGPFDAT=(rGPFDAT&0x0f)|(1<<7)|(0<<6)|(0<<5)|(0<<4); //D3~0
rGPBCON=(rGPBCON&0x3f3fff)|(1<<14); // GPB7: Output
rGPFCON=(rGPFCON&0x00ff)|(0x5500); // GPF4~7: Output
rGPBDAT&=~(1<<8); //Latch enable
rGPBCON=(rGPBCON&0x3cffff)|(1<<16); // GPB8: Output
rGPBDAT|=(1<<10); //Output enable
rGPBCON=(rGPBCON&0x0fffff)|(1<<20); // GPB10: Output
rGPBDAT|=(1<<8); //Latch disable
#endif
MMU_EnableICache();
Uart_Init();
Uart_SendString(SIGN_ON);
NF_Init();
// Check to see if the apps buttons are pressed and take
// the corresponding actions if they do.
// Change this for the final shipping device, so that user
// doesn't have to press button to start!
//
if( (rGPFDAT & 0xF) != 0x0f ) {
dwEntry = 0;
}
// Uart_SendString("\nrGPFDAT is ");
// Uart_SendDWORD(rGPFDAT, TRUE);
Uart_SendString("\ndwEntry is ");
Uart_SendDWORD(dwEntry, TRUE);
// Hardcoded to fetch TOC descriptor dwEntry
err = ReadImageFromNand(dwEntry,0);
// Uart_SendString("\nJumpAddr is ");
// Uart_SendDWORD(JumpAddr, TRUE);
// Uart_SendString("\r\n ");
// Uart_SendString("\r\n ");
// Uart_SendString("\r\n ");
#if 0
for ( i = 0; i < 522; i++ )
{
Uart_SendDWORD(JumpAddr+i, FALSE);
Uart_SendString(" : ");
Uart_SendDWORD(*(LPBYTE)(JumpAddr+i), TRUE);
}
#endif
if (ERR_SUCCESS == err) {
Launch(JumpAddr);
err = ERR_JUMP_FAILED;
}
Uart_SendString("\nBoot ERROR:");
Uart_SendDWORD(err, TRUE);
while (1);
}
// -----------------------------------------------------------------------------
// ReadImageFromNand:
// Reads nk.nb0 off NAND
// Returns ERR_Xxx
// -----------------------------------------------------------------------------
TOC toc; // made global because it's too big for our tiny stack
DWORD
ReadImageFromNand(DWORD dwEntry, DWORD dwSig)
{
DWORD dwSectorsNeeded;
DWORD dwSector, dwLength; // Start Sector & Length
DWORD dwRAM, i;
if ( !FMD_ReadSector(TOC_SECTOR,
(LPBYTE)&toc,
NULL, 1) )
{
Uart_SendString("ERR_DISK_OP_FAIL1\n");
return ERR_DISK_OP_FAIL1;
}
if ( !VALID_TOC(&toc) ) {
Uart_SendString("ERR_INVALID_TOC: ");
Uart_SendDWORD(toc.dwSignature, TRUE);
return ERR_INVALID_TOC;
}
if ( !(toc.id[dwEntry].dwImageType & IMAGE_TYPE_RAMIMAGE) ) {
Uart_SendString("ERR_INVALID_FILE_TYPE: ");
Uart_SendDWORD(toc.id[dwEntry].dwImageType, TRUE);
return ERR_INVALID_FILE_TYPE;
}
// ??
// if ( !(toc.id[dwEntry].dwImageType & IMAGE_TYPE_BINFS) ) {
// dwSectorsNeeded = toc.id[dwEntry].dwTtlSectors;
// } else {
dwSectorsNeeded = toc.id[dwEntry].dwTtlSectors; // xipkernel size = 0x9B4
// }
Uart_SendString("Sector addr on NAND: ");
Uart_SendDWORD(toc.id[dwEntry].sgList[0].dwSector, TRUE);
Uart_SendString("TotalSector: ");
Uart_SendDWORD(dwSectorsNeeded, TRUE);
dwRAM = VIRTUAL_TO_PHYSICAL(toc.id[dwEntry].dwLoadAddress);
JumpAddr = toc.id[dwEntry].dwJumpAddress ? VIRTUAL_TO_PHYSICAL(toc.id[dwEntry].dwJumpAddress) :
VIRTUAL_TO_PHYSICAL(toc.id[dwEntry].dwLoadAddress);
//
// Load the disk image directly into RAM
// BUGBUG: recover from read failures
//
Uart_SendString("Reading Kernel Image from NAND\r\n");
i = 0;
while (dwSectorsNeeded && i < MAX_SG_SECTORS)
{
dwSector = toc.id[dwEntry].sgList[i].dwSector;
dwLength = toc.id[dwEntry].sgList[i].dwLength;
Uart_SendString(" dwSector: ");
Uart_SendDWORD(dwSector, TRUE);
Uart_SendString(" dwLength: ");
Uart_SendDWORD(dwLength, TRUE);
Uart_SendString(" dwRAM: ");
Uart_SendDWORD(dwRAM, TRUE);
// read each sg segment
while (dwLength) {
if ( !FMD_ReadSector(dwSector,
(LPBYTE)dwRAM,
NULL, 1) )
{
Uart_SendString("ERR_DISK_OP_FAIL2: ");
Uart_SendDWORD(dwSector, TRUE);
dwSector++;
continue;
// return ERR_DISK_OP_FAIL2;
}
dwSector++;
dwLength--;
dwRAM += SECTOR_SIZE;
}
dwSectorsNeeded -= toc.id[dwEntry].sgList[i].dwLength;
i++;
}
// We only do this if the dwRAM is not zero (The default tocblock1
// set the dwRAM to be 0)
if (toc.chainInfo.dwLoadAddress == 0) {
return ERR_SUCCESS;
}
// Load the Chain.bin stored on NAND to the SDRAM
// if ( toc.id[dwEntry].dwImageType == 6 ) // For WinCE 4.2 Image
// if ( 1 ) // For WinCE 4.2 Image
// {
// dwRAM = VIRTUAL_TO_PHYSICAL(toc.id[dwEntry].dwLoadAddress);
// dwSectorsNeeded = toc.id[dwEntry].sgList->dwLength;
// dwSector = toc.id[dwEntry].sgList->dwSector;
// }
// else
{
dwRAM = VIRTUAL_TO_PHYSICAL(toc.chainInfo.dwLoadAddress); // 0x303c0000
dwSectorsNeeded = toc.chainInfo.dwLength; // 0x20
dwSector = toc.chainInfo.dwFlashAddress; // 0x103c0
// dwSectorsNeeded = 0x20;
// dwSector = 0x104C0;
}
#if 0
// Copy UUID to SDRAM drv_glob area from NAND
Uart_SendString("Reading UUID from NAND : ");
for ( i = 0; i < 8; i++ )
{
*pbUUID = toc.udid[i];
// Uart_SendByte(*pbUUID);
// Uart_SendDWORD(*pbUUID, FALSE);
// Uart_SendString(": ");
pbUUID++;
}
Uart_SendString("\r\n");
#endif
// Uart_SendString("Reading Chain from NAND\r\n");
// Uart_SendString("LoadAddr: ");
// Uart_SendDWORD(dwRAM, TRUE);
// Uart_SendString("NAND SectorAddr: ");
// Uart_SendDWORD(dwSector, TRUE);
// Uart_SendString("Length: ");
// Uart_SendDWORD(dwSectorsNeeded, TRUE);
#if 1
while(dwSectorsNeeded) {
if (!FMD_ReadSector(dwSector,
(LPBYTE) dwRAM,
NULL, 1) ) {
Uart_SendString("Failed reading Chain.bin:");
Uart_SendDWORD(dwSector, TRUE);
dwSector++;
continue;
}
dwSector++;
dwSectorsNeeded--;
dwRAM += SECTOR_SIZE;
}
#endif
// Uart_SendString("RETURN SUCCESS");
// Uart_SendString("\r\n ");
return ERR_SUCCESS;
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -