📄 discretefouriertransform.cpp
字号:
// DiscreteFourierTransform.cpp: implementation of the
// CDiscreteFourierTransform class.
//
//////////////////////////////////////////////////////////////////////
#include "DiscreteFourierTransform.h"
//////////////////////////////////////////////////////////////////////
// Construction/Destruction
//////////////////////////////////////////////////////////////////////
namespace AudioEngine {
CDiscreteFourierTransform::CDiscreteFourierTransform(int bufsize, int samplerate, int bitspersample, int channels) :
m_BufSize(bufsize), m_SampleRate(samplerate), m_BitsPerSample(bitspersample), m_NumChannels(channels)
{
// make space for buffers
m_Input = new float[bufsize];
m_FreqOutput = new float[(bufsize/2)+1];
m_AmpOutput = new float[(bufsize/2)+1];
// we know already what the frequencies of each bin will be
for (int bin=0; bin < m_BufSize/2; bin++) {
m_FreqOutput[bin] = (float)bin * m_SampleRate / m_BufSize;
}
}
CDiscreteFourierTransform::~CDiscreteFourierTransform()
{
delete[] m_Input;
delete[] m_FreqOutput;
delete[] m_AmpOutput;
}
void CDiscreteFourierTransform::LoadInputData(unsigned char *data)
{
// convert each data point from 0-255 to floating point -1..1
if (m_BitsPerSample == 8) {
for (int q=0; q < m_BufSize; q++) {
float d = data[q*m_NumChannels];
m_Input[q] = (d-127.0f)/127.0f;
if (m_Input[q] < -1.0f) m_Input[q] = -1.0f;
if (m_Input[q] > 1.0f) m_Input[q] = 1.0f;
}
}
else if (m_BitsPerSample == 16) {
short int *sidata = reinterpret_cast<short int *>(data);
for (int q=0; q < m_BufSize; q++) {
float d = sidata[q*m_NumChannels];
m_Input[q] = (d-32767.0f)/32767.0f;
if (m_Input[q] < -1.0f) m_Input[q] = -1.0f;
if (m_Input[q] > 1.0f) m_Input[q] = 1.0f;
}
}
else {
// not supported
for (int q=0; q < m_BufSize; q++) { m_Input[q] = 0.0f; }
}
}
void CDiscreteFourierTransform::PerformSlowFourierTransform()
{
for (int bin = 0; bin <= m_BufSize/2; bin++) {
float cosAmp = 0.0f;
float sinAmp = 0.0f;
for (int k = 0; k < m_BufSize; k++) {
float x = 2.0f * M_PI * (float)bin * (float)k / (float)m_BufSize;
sinAmp += m_Input[k] * sin(x);
cosAmp += m_Input[k] * cos(x);
}
m_AmpOutput[bin] = sqrt(sinAmp*sinAmp + cosAmp*cosAmp);
}
}
} // namespace
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -