📄 md5checksum.cpp
字号:
ASSERT( nLength % 4 == 0 );
ASSERT( AfxIsValidAddress(Output, nLength/4, TRUE) );
ASSERT( AfxIsValidAddress(Input, nLength, FALSE) );
//initialisations
UINT i=0; //index to Output array
UINT j=0; //index to Input array
//transfer the data by shifting and copying
for ( ; j < nLength; i++, j += 4)
{
Output[i] = (ULONG)Input[j] |
(ULONG)Input[j+1] << 8 |
(ULONG)Input[j+2] << 16 |
(ULONG)Input[j+3] << 24;
}
}
/*****************************************************************************************
FUNCTION: CMD5Checksum::Transform
DETAILS: protected
DESCRIPTION: MD5 basic transformation algorithm; transforms 'm_lMD5'
RETURNS: void
ARGUMENTS: BYTE Block[64]
NOTES: An MD5 checksum is calculated by four rounds of 'Transformation'.
The MD5 checksum currently held in m_lMD5 is merged by the
transformation process with data passed in 'Block'.
*****************************************************************************************/
void CMD5Checksum::Transform(BYTE Block[64])
{
//initialise local data with current checksum
ULONG a = m_lMD5[0];
ULONG b = m_lMD5[1];
ULONG c = m_lMD5[2];
ULONG d = m_lMD5[3];
//copy BYTES from input 'Block' to an array of ULONGS 'X'
ULONG X[16];
ByteToDWord( X, Block, 64 );
//Perform Round 1 of the transformation
FF (a, b, c, d, X[ 0], MD5_S11, MD5_T01);
FF (d, a, b, c, X[ 1], MD5_S12, MD5_T02);
FF (c, d, a, b, X[ 2], MD5_S13, MD5_T03);
FF (b, c, d, a, X[ 3], MD5_S14, MD5_T04);
FF (a, b, c, d, X[ 4], MD5_S11, MD5_T05);
FF (d, a, b, c, X[ 5], MD5_S12, MD5_T06);
FF (c, d, a, b, X[ 6], MD5_S13, MD5_T07);
FF (b, c, d, a, X[ 7], MD5_S14, MD5_T08);
FF (a, b, c, d, X[ 8], MD5_S11, MD5_T09);
FF (d, a, b, c, X[ 9], MD5_S12, MD5_T10);
FF (c, d, a, b, X[10], MD5_S13, MD5_T11);
FF (b, c, d, a, X[11], MD5_S14, MD5_T12);
FF (a, b, c, d, X[12], MD5_S11, MD5_T13);
FF (d, a, b, c, X[13], MD5_S12, MD5_T14);
FF (c, d, a, b, X[14], MD5_S13, MD5_T15);
FF (b, c, d, a, X[15], MD5_S14, MD5_T16);
//Perform Round 2 of the transformation
GG (a, b, c, d, X[ 1], MD5_S21, MD5_T17);
GG (d, a, b, c, X[ 6], MD5_S22, MD5_T18);
GG (c, d, a, b, X[11], MD5_S23, MD5_T19);
GG (b, c, d, a, X[ 0], MD5_S24, MD5_T20);
GG (a, b, c, d, X[ 5], MD5_S21, MD5_T21);
GG (d, a, b, c, X[10], MD5_S22, MD5_T22);
GG (c, d, a, b, X[15], MD5_S23, MD5_T23);
GG (b, c, d, a, X[ 4], MD5_S24, MD5_T24);
GG (a, b, c, d, X[ 9], MD5_S21, MD5_T25);
GG (d, a, b, c, X[14], MD5_S22, MD5_T26);
GG (c, d, a, b, X[ 3], MD5_S23, MD5_T27);
GG (b, c, d, a, X[ 8], MD5_S24, MD5_T28);
GG (a, b, c, d, X[13], MD5_S21, MD5_T29);
GG (d, a, b, c, X[ 2], MD5_S22, MD5_T30);
GG (c, d, a, b, X[ 7], MD5_S23, MD5_T31);
GG (b, c, d, a, X[12], MD5_S24, MD5_T32);
//Perform Round 3 of the transformation
HH (a, b, c, d, X[ 5], MD5_S31, MD5_T33);
HH (d, a, b, c, X[ 8], MD5_S32, MD5_T34);
HH (c, d, a, b, X[11], MD5_S33, MD5_T35);
HH (b, c, d, a, X[14], MD5_S34, MD5_T36);
HH (a, b, c, d, X[ 1], MD5_S31, MD5_T37);
HH (d, a, b, c, X[ 4], MD5_S32, MD5_T38);
HH (c, d, a, b, X[ 7], MD5_S33, MD5_T39);
HH (b, c, d, a, X[10], MD5_S34, MD5_T40);
HH (a, b, c, d, X[13], MD5_S31, MD5_T41);
HH (d, a, b, c, X[ 0], MD5_S32, MD5_T42);
HH (c, d, a, b, X[ 3], MD5_S33, MD5_T43);
HH (b, c, d, a, X[ 6], MD5_S34, MD5_T44);
HH (a, b, c, d, X[ 9], MD5_S31, MD5_T45);
HH (d, a, b, c, X[12], MD5_S32, MD5_T46);
HH (c, d, a, b, X[15], MD5_S33, MD5_T47);
HH (b, c, d, a, X[ 2], MD5_S34, MD5_T48);
//Perform Round 4 of the transformation
II (a, b, c, d, X[ 0], MD5_S41, MD5_T49);
II (d, a, b, c, X[ 7], MD5_S42, MD5_T50);
II (c, d, a, b, X[14], MD5_S43, MD5_T51);
II (b, c, d, a, X[ 5], MD5_S44, MD5_T52);
II (a, b, c, d, X[12], MD5_S41, MD5_T53);
II (d, a, b, c, X[ 3], MD5_S42, MD5_T54);
II (c, d, a, b, X[10], MD5_S43, MD5_T55);
II (b, c, d, a, X[ 1], MD5_S44, MD5_T56);
II (a, b, c, d, X[ 8], MD5_S41, MD5_T57);
II (d, a, b, c, X[15], MD5_S42, MD5_T58);
II (c, d, a, b, X[ 6], MD5_S43, MD5_T59);
II (b, c, d, a, X[13], MD5_S44, MD5_T60);
II (a, b, c, d, X[ 4], MD5_S41, MD5_T61);
II (d, a, b, c, X[11], MD5_S42, MD5_T62);
II (c, d, a, b, X[ 2], MD5_S43, MD5_T63);
II (b, c, d, a, X[ 9], MD5_S44, MD5_T64);
//add the transformed values to the current checksum
m_lMD5[0] += a;
m_lMD5[1] += b;
m_lMD5[2] += c;
m_lMD5[3] += d;
}
/*****************************************************************************************
CONSTRUCTOR: CMD5Checksum
DESCRIPTION: Initialises member data
ARGUMENTS: None
NOTES: None
*****************************************************************************************/
CMD5Checksum::CMD5Checksum()
{
// zero members
memset( m_lpszBuffer, 0, 64 );
m_nCount[0] = m_nCount[1] = 0;
// Load magic state initialization constants
m_lMD5[0] = MD5_INIT_STATE_0;
m_lMD5[1] = MD5_INIT_STATE_1;
m_lMD5[2] = MD5_INIT_STATE_2;
m_lMD5[3] = MD5_INIT_STATE_3;
}
/*****************************************************************************************
FUNCTION: CMD5Checksum::DWordToByte
DETAILS: private
DESCRIPTION: Transfers the data in an 32 bit array to a 8 bit array
RETURNS: void
ARGUMENTS: BYTE* Output : the 8 bit destination array
DWORD* Input : the 32 bit source array
UINT nLength : the number of 8 bit data items in the source array
NOTES: One DWORD from the input array is transferred into four BYTES
in the output array. The first (0-7) bits of the first DWORD are
transferred to the first output BYTE, bits bits 8-15 are transferred from
the second BYTE etc.
The algorithm assumes that the output array is a multiple of 4 bytes long
so that there is a perfect fit of 8 bit BYTES into the 32 bit DWORDs.
*****************************************************************************************/
void CMD5Checksum::DWordToByte(BYTE* Output, DWORD* Input, UINT nLength )
{
//entry invariants
ASSERT( nLength % 4 == 0 );
ASSERT( AfxIsValidAddress(Output, nLength, TRUE) );
ASSERT( AfxIsValidAddress(Input, nLength/4, FALSE) );
//transfer the data by shifting and copying
UINT i = 0;
UINT j = 0;
for ( ; j < nLength; i++, j += 4)
{
Output[j] = (UCHAR)(Input[i] & 0xff);
Output[j+1] = (UCHAR)((Input[i] >> 8) & 0xff);
Output[j+2] = (UCHAR)((Input[i] >> 16) & 0xff);
Output[j+3] = (UCHAR)((Input[i] >> 24) & 0xff);
}
}
/*****************************************************************************************
FUNCTION: CMD5Checksum::Final
DETAILS: protected
DESCRIPTION: Implementation of main MD5 checksum algorithm; ends the checksum calculation.
RETURNS: CString : the final hexadecimal MD5 checksum result
ARGUMENTS: None
NOTES: Performs the final MD5 checksum calculation ('Update' does most of the work,
this function just finishes the calculation.)
*****************************************************************************************/
CString CMD5Checksum::Final()
{
//Save number of bits
BYTE Bits[8];
DWordToByte( Bits, m_nCount, 8 );
//Pad out to 56 mod 64.
UINT nIndex = (UINT)((m_nCount[0] >> 3) & 0x3f);
UINT nPadLen = (nIndex < 56) ? (56 - nIndex) : (120 - nIndex);
Update( PADDING, nPadLen );
//Append length (before padding)
Update( Bits, 8 );
//Store final state in 'lpszMD5'
const int nMD5Size = 16;
unsigned char lpszMD5[ nMD5Size ];
DWordToByte( lpszMD5, m_lMD5, nMD5Size );
//Convert the hexadecimal checksum to a CString
CString strMD5;
for ( int i=0; i < nMD5Size; i++)
{
CString Str;
if (lpszMD5[i] == 0) {
Str = CString("00");
}
else if (lpszMD5[i] <= 15) {
Str.Format("0%x",lpszMD5[i]);
}
else {
Str.Format("%x",lpszMD5[i]);
}
ASSERT( Str.GetLength() == 2 );
strMD5 += Str;
}
ASSERT( strMD5.GetLength() == 32 );
return strMD5;
}
/*****************************************************************************************
FUNCTION: CMD5Checksum::Update
DETAILS: protected
DESCRIPTION: Implementation of main MD5 checksum algorithm
RETURNS: void
ARGUMENTS: BYTE* Input : input block
UINT nInputLen : length of input block
NOTES: Computes the partial MD5 checksum for 'nInputLen' bytes of data in 'Input'
*****************************************************************************************/
void CMD5Checksum::Update( BYTE* Input, ULONG nInputLen )
{
//Compute number of bytes mod 64
UINT nIndex = (UINT)((m_nCount[0] >> 3) & 0x3F);
//Update number of bits
if ( ( m_nCount[0] += nInputLen << 3 ) < ( nInputLen << 3) )
{
m_nCount[1]++;
}
m_nCount[1] += (nInputLen >> 29);
//Transform as many times as possible.
UINT i=0;
UINT nPartLen = 64 - nIndex;
if (nInputLen >= nPartLen)
{
memcpy( &m_lpszBuffer[nIndex], Input, nPartLen );
Transform( m_lpszBuffer );
for (i = nPartLen; i + 63 < nInputLen; i += 64)
{
Transform( &Input[i] );
}
nIndex = 0;
}
else
{
i = 0;
}
// Buffer remaining input
memcpy( &m_lpszBuffer[nIndex], &Input[i], nInputLen-i);
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -