⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 svmprecomputed.cpp

📁 基于支持向量机的分类方法
💻 CPP
📖 第 1 页 / 共 4 页
字号:
		cache = new Cache(l,(int)(param.cache_size*(1<<20)));		sign = new schar[2*l];		index = new int[2*l];		for(int k=0;k<l;k++)		{			sign[k] = 1;			sign[k+l] = -1;			index[k] = k;			index[k+l] = k;		}		buffer[0] = new Qfloat[2*l];		buffer[1] = new Qfloat[2*l];		next_buffer = 0;				this->kernel_type = param.kernel_type;	}		void swap_index(int i, int j) const	{		swap(sign[i],sign[j]);		swap(index[i],index[j]);	}		Qfloat *get_Q(int i, int len) const	{		Qfloat *data;		int real_i = index[i];		if(cache->get_data(real_i,&data,l) < l)		{			if( kernel_type== MATRIX)			{                                                                                                       							for(int j=0;j<l;j++)                               		data[j] = (Qfloat)((x[real_i][(int)(x[j][0].value)].value));			}                                                                                						else			{                                                                                										for(int j=0;j<l;j++)					data[j] = (Qfloat)(this->*kernel_function)(real_i,j);			}		}		// reorder and copy		Qfloat *buf = buffer[next_buffer];		next_buffer = 1 - next_buffer;		schar si = sign[i];		for(int j=0;j<len;j++)			buf[j] = si * sign[j] * data[index[j]];		return buf;	}	~SVR_Q()	{		delete cache;		delete[] sign;		delete[] index;		delete[] buffer[0];		delete[] buffer[1];	}private:	int l;	Cache *cache;	schar *sign;	int *index;	mutable int next_buffer;	Qfloat* buffer[2];	int kernel_type;};//// construct and solve various formulations//static void solve_c_svc(	const svm_problem *prob, const svm_parameter* param,	double *alpha, Solver::SolutionInfo* si, double Cp, double Cn){	int l = prob->l;	double *minus_ones = new double[l];	schar *y = new schar[l];	int i;	for(i=0;i<l;i++)	{		alpha[i] = 0;		minus_ones[i] = -1;		if(prob->y[i] > 0) y[i] = +1; else y[i]=-1;	}	Solver s;	s.Solve(l, SVC_Q(*prob,*param,y), minus_ones, y,		alpha, Cp, Cn, param->eps, si, param->shrinking);	double sum_alpha=0;	for(i=0;i<l;i++)		sum_alpha += alpha[i];	info("nu = %f\n", sum_alpha/(param->C*prob->l));	for(i=0;i<l;i++)		alpha[i] *= y[i];	delete[] minus_ones;	delete[] y;}static void solve_nu_svc(	const svm_problem *prob, const svm_parameter *param,	double *alpha, Solver::SolutionInfo* si){	int i;	int l = prob->l;	double nu = param->nu;	schar *y = new schar[l];	for(i=0;i<l;i++)		if(prob->y[i]>0)			y[i] = +1;		else			y[i] = -1;	double sum_pos = nu*l/2;	double sum_neg = nu*l/2;	for(i=0;i<l;i++)		if(y[i] == +1)		{			alpha[i] = min(1.0,sum_pos);			sum_pos -= alpha[i];		}		else		{			alpha[i] = min(1.0,sum_neg);			sum_neg -= alpha[i];		}	double *zeros = new double[l];	for(i=0;i<l;i++)		zeros[i] = 0;	Solver_NU s;	s.Solve(l, SVC_Q(*prob,*param,y), zeros, y,		alpha, 1.0, 1.0, param->eps, si,  param->shrinking);	double r = si->r;	info("C = %f\n",1/r);	for(i=0;i<l;i++)		alpha[i] *= y[i]/r;	si->rho /= r;	si->obj /= (r*r);	si->upper_bound_p = 1/r;	si->upper_bound_n = 1/r;	delete[] y;	delete[] zeros;}static void solve_one_class(	const svm_problem *prob, const svm_parameter *param,	double *alpha, Solver::SolutionInfo* si){	int l = prob->l;	double *zeros = new double[l];	schar *ones = new schar[l];	int i;	int n = (int)(param->nu*prob->l);	// # of alpha's at upper bound	for(i=0;i<n;i++)		alpha[i] = 1;	alpha[n] = param->nu * prob->l - n;	for(i=n+1;i<l;i++)		alpha[i] = 0;	for(i=0;i<l;i++)	{		zeros[i] = 0;		ones[i] = 1;	}	Solver s;	s.Solve(l, ONE_CLASS_Q(*prob,*param), zeros, ones,		alpha, 1.0, 1.0, param->eps, si, param->shrinking);	delete[] zeros;	delete[] ones;}static void solve_epsilon_svr(	const svm_problem *prob, const svm_parameter *param,	double *alpha, Solver::SolutionInfo* si){	int l = prob->l;	double *alpha2 = new double[2*l];	double *linear_term = new double[2*l];	schar *y = new schar[2*l];	int i;	for(i=0;i<l;i++)	{		alpha2[i] = 0;		linear_term[i] = param->p - prob->y[i];		y[i] = 1;		alpha2[i+l] = 0;		linear_term[i+l] = param->p + prob->y[i];		y[i+l] = -1;	}	Solver s;	s.Solve(2*l, SVR_Q(*prob,*param), linear_term, y,		alpha2, param->C, param->C, param->eps, si, param->shrinking);	double sum_alpha = 0;	for(i=0;i<l;i++)	{		alpha[i] = alpha2[i] - alpha2[i+l];		sum_alpha += fabs(alpha[i]);	}	info("nu = %f\n",sum_alpha/(param->C*l));	delete[] alpha2;	delete[] linear_term;	delete[] y;}static void solve_nu_svr(	const svm_problem *prob, const svm_parameter *param,	double *alpha, Solver::SolutionInfo* si){	int l = prob->l;	double C = param->C;	double *alpha2 = new double[2*l];	double *linear_term = new double[2*l];	schar *y = new schar[2*l];	int i;	double sum = C * param->nu * l / 2;	for(i=0;i<l;i++)	{		alpha2[i] = alpha2[i+l] = min(sum,C);		sum -= alpha2[i];		linear_term[i] = - prob->y[i];		y[i] = 1;		linear_term[i+l] = prob->y[i];		y[i+l] = -1;	}	Solver_NU s;	s.Solve(2*l, SVR_Q(*prob,*param), linear_term, y,		alpha2, C, C, param->eps, si, param->shrinking);	info("epsilon = %f\n",-si->r);	for(i=0;i<l;i++)		alpha[i] = alpha2[i] - alpha2[i+l];	delete[] alpha2;	delete[] linear_term;	delete[] y;}//// decision_function//struct decision_function{	double *alpha;	double rho;	};decision_function svm_train_one(	const svm_problem *prob, const svm_parameter *param,	double Cp, double Cn){	double *alpha = Malloc(double,prob->l);	Solver::SolutionInfo si;	switch(param->svm_type)	{		case C_SVC:			solve_c_svc(prob,param,alpha,&si,Cp,Cn);			break;		case NU_SVC:			solve_nu_svc(prob,param,alpha,&si);			break;		case ONE_CLASS:			solve_one_class(prob,param,alpha,&si);			break;		case EPSILON_SVR:			solve_epsilon_svr(prob,param,alpha,&si);			break;		case NU_SVR:			solve_nu_svr(prob,param,alpha,&si);			break;	}	info("obj = %f, rho = %f\n",si.obj,si.rho);	// output SVs	int nSV = 0;	int nBSV = 0;	for(int i=0;i<prob->l;i++)	{		if(fabs(alpha[i]) > 0)		{			++nSV;			if(prob->y[i] > 0)			{				if(fabs(alpha[i]) >= si.upper_bound_p)					++nBSV;			}			else			{				if(fabs(alpha[i]) >= si.upper_bound_n)					++nBSV;			}		}	}	info("nSV = %d, nBSV = %d\n",nSV,nBSV);	decision_function f;	f.alpha = alpha;	f.rho = si.rho;	return f;}//// svm_model//struct svm_model{	svm_parameter param;	// parameter	int nr_class;		// number of classes, = 2 in regression/one class svm	int l;			// total #SV	svm_node **SV;		// SVs (SV[l])	double **sv_coef;	// coefficients for SVs in decision functions (sv_coef[n-1][l])	double *rho;		// constants in decision functions (rho[n*(n-1)/2])	// for classification only	int *label;		// label of each class (label[n])	int *nSV;		// number of SVs for each class (nSV[n])				// nSV[0] + nSV[1] + ... + nSV[n-1] = l	// XXX	int free_sv;		// 1 if svm_model is created by svm_load_model				// 0 if svm_model is created by svm_train};int get_svm_model_l(svm_model* model){  int l;  l=model->l;  return l;}int get_svm_model_nrclass(svm_model* model){  int l;  l=model->nr_class;  return l;}//// Interface functions//svm_model *svm_train(const svm_problem *prob, const svm_parameter *param){	svm_model *model = Malloc(svm_model,1);	model->param = *param;	model->free_sv = 0;	// XXX	if(param->svm_type == ONE_CLASS ||	   param->svm_type == EPSILON_SVR ||	   param->svm_type == NU_SVR)	{		// regression or one-class-svm		model->nr_class = 2;		model->label = NULL;		model->nSV = NULL;		model->sv_coef = Malloc(double *,1);		decision_function f = svm_train_one(prob,param,0,0);		model->rho = Malloc(double,1);		model->rho[0] = f.rho;		int nSV = 0;		int i;		for(i=0;i<prob->l;i++)			if(fabs(f.alpha[i]) > 0) ++nSV;		model->l = nSV;		model->SV = Malloc(svm_node *,nSV);		model->sv_coef[0] = Malloc(double,nSV);		int j = 0;		for(i=0;i<prob->l;i++)			if(fabs(f.alpha[i]) > 0)			{				model->SV[j] = prob->x[i];				model->sv_coef[0][j] = f.alpha[i];				++j;			}				free(f.alpha);	}	else	{		// classification		// find out the number of classes		int l = prob->l;		int max_nr_class = 16;		int nr_class = 0;		int *label = Malloc(int,max_nr_class);		int *count = Malloc(int,max_nr_class);		int *index = Malloc(int,l);		int i;		for(i=0;i<l;i++)		{			int this_label = (int)prob->y[i];			int j;			for(j=0;j<nr_class;j++)				if(this_label == label[j])				{					++count[j];					break;				}			index[i] = j;			if(j == nr_class)			{				if(nr_class == max_nr_class)				{					max_nr_class *= 2;					label = (int *)realloc(label,max_nr_class*sizeof(int));					count = (int *)realloc(count,max_nr_class*sizeof(int));				}				label[nr_class] = this_label;				count[nr_class] = 1;				++nr_class;			}		}		// group training data of the same class		int *start = Malloc(int,nr_class);		start[0] = 0;		for(i=1;i<nr_class;i++)			start[i] = start[i-1]+count[i-1];		svm_node **x = Malloc(svm_node *,l);				for(i=0;i<l;i++)		{			x[start[index[i]]] = prob->x[i];			++start[index[i]];		}				start[0] = 0;		for(i=1;i<nr_class;i++)			start[i] = start[i-1]+count[i-1];		// calculate weighted C		double *weighted_C = Malloc(double, nr_class);		for(i=0;i<nr_class;i++)			weighted_C[i] = param->C;		for(i=0;i<param->nr_weight;i++)		{				int j;			for(j=0;j<nr_class;j++)				if(param->weight_label[i] == label[j])					break;			if(j == nr_class)				fprintf(stderr,"warning: class label %d specified in weight is not found\n", param->weight_label[i]);			else				weighted_C[j] *= param->weight[i];		}		// train n*(n-1)/2 models				bool *nonzero = Malloc(bool,l);		for(i=0;i<l;i++)			nonzero[i] = false;		decision_function *f = Malloc(decision_function,nr_class*(nr_class-1)/2);		int p = 0;		for(i=0;i<nr_class;i++)			for(int j=i+1;j<nr_class;j++)			{				svm_problem sub_prob;				int si = start[i], sj = start[j];				int ci = count[i], cj = count[j];				sub_prob.l = ci+cj;				sub_prob.x = Malloc(svm_node *,sub_prob.l);				sub_prob.y = Malloc(double,sub_prob.l);				int k;				for(k=0;k<ci;k++)				{					sub_prob.x[k] = x[si+k];					sub_prob.y[k] = +1;				}				for(k=0;k<cj;k++)				{					sub_prob.x[ci+k] = x[sj+k];					sub_prob.y[ci+k] = -1;				}								f[p] = svm_train_one(&sub_prob,param,weighted_C[i],weighted_C[j]);				for(k=0;k<ci;k++)					if(!nonzero[si+k] && fabs(f[p].alpha[k]) > 0)						nonzero[si+k] = true;				for(k=0;k<cj;k++)					if(!nonzero[sj+k] && fabs(f[p].alpha[ci+k]) > 0)						nonzero[sj+k] = true;				free(sub_prob.x);				free(sub_prob.y);				++p;			}		// build output		model->nr_class = nr_class;				model->label = Malloc(int,nr_class);		for(i=0;i<nr_class;i++)			model->label[i] = label[i];				model->rho = Malloc(double,nr_class*(nr_class-1)/2);		for(i=0;i<nr_class*(nr_class-1)/2;i++)			model->rho[i] = f[i].rho;		int total_sv = 0;		int *nz_count = Malloc(int,nr_class);		model->nSV = Malloc(int,nr_class);		for(i=0;i<nr_class;i++)		{			int nSV = 0;			for(int j=0;j<count[i];j++)				if(nonzero[start[i]+j])				{						++nSV;					++total_sv;				}			model->nSV[i] = nSV;			nz_count[i] = nSV;		}				info("Total nSV = %d\n",total_sv);		model->l = total_sv;		model->SV = Malloc(svm_node *,total_sv);		p = 0;		for(i=0;i<l;i++)			if(nonzero[i]) model->SV[p++] = x[i];		int *nz_start = Malloc(int,nr_class);		nz_start[0] = 0;		for(i=1;i<nr_class;i++)			nz_start[i] = nz_start[i-1]+nz_count[i-1];		model->sv_coef = Malloc(double *,nr_class-1);		for(i=0;i<nr_class-1;i++)			model->sv_coef[i] = Malloc(double,total_sv);		p = 0;		for(i=0;i<nr_class;i++)			for(int j=i+1;j<nr_class;j++)			{				// classifier (i,j): coefficients with				// i are in sv_coef[j-1][nz_start[i]...],				// j are in sv_coef[i][nz_start[j]...]				int si = start[i];				int sj = start[j];				int ci = count[i];				int cj = count[j];								int q = nz_start[i];				int k;				for(k=0;k<ci;k++)					if(nonzero[si+k])						model->sv_coef[j-1][q++] = f[p].alpha[k];				q = nz_start[j];				for(k=0;k<cj;k++)					if(nonzero[sj+k])						model->sv_coef[i][q++] = f[p].alpha[ci+k];				++p;			}				free(label);		free(count);		free(index);		free(start);		free(x);		free(weighted_C);		free(nonzero);		for(i=0;i<nr_class*(nr_class-1)/2;i++)			free(f[i].alpha);		free(f);		free(nz_count);		free(nz_start);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -