📄 svmprecomputed.cpp
字号:
cache = new Cache(l,(int)(param.cache_size*(1<<20))); sign = new schar[2*l]; index = new int[2*l]; for(int k=0;k<l;k++) { sign[k] = 1; sign[k+l] = -1; index[k] = k; index[k+l] = k; } buffer[0] = new Qfloat[2*l]; buffer[1] = new Qfloat[2*l]; next_buffer = 0; this->kernel_type = param.kernel_type; } void swap_index(int i, int j) const { swap(sign[i],sign[j]); swap(index[i],index[j]); } Qfloat *get_Q(int i, int len) const { Qfloat *data; int real_i = index[i]; if(cache->get_data(real_i,&data,l) < l) { if( kernel_type== MATRIX) { for(int j=0;j<l;j++) data[j] = (Qfloat)((x[real_i][(int)(x[j][0].value)].value)); } else { for(int j=0;j<l;j++) data[j] = (Qfloat)(this->*kernel_function)(real_i,j); } } // reorder and copy Qfloat *buf = buffer[next_buffer]; next_buffer = 1 - next_buffer; schar si = sign[i]; for(int j=0;j<len;j++) buf[j] = si * sign[j] * data[index[j]]; return buf; } ~SVR_Q() { delete cache; delete[] sign; delete[] index; delete[] buffer[0]; delete[] buffer[1]; }private: int l; Cache *cache; schar *sign; int *index; mutable int next_buffer; Qfloat* buffer[2]; int kernel_type;};//// construct and solve various formulations//static void solve_c_svc( const svm_problem *prob, const svm_parameter* param, double *alpha, Solver::SolutionInfo* si, double Cp, double Cn){ int l = prob->l; double *minus_ones = new double[l]; schar *y = new schar[l]; int i; for(i=0;i<l;i++) { alpha[i] = 0; minus_ones[i] = -1; if(prob->y[i] > 0) y[i] = +1; else y[i]=-1; } Solver s; s.Solve(l, SVC_Q(*prob,*param,y), minus_ones, y, alpha, Cp, Cn, param->eps, si, param->shrinking); double sum_alpha=0; for(i=0;i<l;i++) sum_alpha += alpha[i]; info("nu = %f\n", sum_alpha/(param->C*prob->l)); for(i=0;i<l;i++) alpha[i] *= y[i]; delete[] minus_ones; delete[] y;}static void solve_nu_svc( const svm_problem *prob, const svm_parameter *param, double *alpha, Solver::SolutionInfo* si){ int i; int l = prob->l; double nu = param->nu; schar *y = new schar[l]; for(i=0;i<l;i++) if(prob->y[i]>0) y[i] = +1; else y[i] = -1; double sum_pos = nu*l/2; double sum_neg = nu*l/2; for(i=0;i<l;i++) if(y[i] == +1) { alpha[i] = min(1.0,sum_pos); sum_pos -= alpha[i]; } else { alpha[i] = min(1.0,sum_neg); sum_neg -= alpha[i]; } double *zeros = new double[l]; for(i=0;i<l;i++) zeros[i] = 0; Solver_NU s; s.Solve(l, SVC_Q(*prob,*param,y), zeros, y, alpha, 1.0, 1.0, param->eps, si, param->shrinking); double r = si->r; info("C = %f\n",1/r); for(i=0;i<l;i++) alpha[i] *= y[i]/r; si->rho /= r; si->obj /= (r*r); si->upper_bound_p = 1/r; si->upper_bound_n = 1/r; delete[] y; delete[] zeros;}static void solve_one_class( const svm_problem *prob, const svm_parameter *param, double *alpha, Solver::SolutionInfo* si){ int l = prob->l; double *zeros = new double[l]; schar *ones = new schar[l]; int i; int n = (int)(param->nu*prob->l); // # of alpha's at upper bound for(i=0;i<n;i++) alpha[i] = 1; alpha[n] = param->nu * prob->l - n; for(i=n+1;i<l;i++) alpha[i] = 0; for(i=0;i<l;i++) { zeros[i] = 0; ones[i] = 1; } Solver s; s.Solve(l, ONE_CLASS_Q(*prob,*param), zeros, ones, alpha, 1.0, 1.0, param->eps, si, param->shrinking); delete[] zeros; delete[] ones;}static void solve_epsilon_svr( const svm_problem *prob, const svm_parameter *param, double *alpha, Solver::SolutionInfo* si){ int l = prob->l; double *alpha2 = new double[2*l]; double *linear_term = new double[2*l]; schar *y = new schar[2*l]; int i; for(i=0;i<l;i++) { alpha2[i] = 0; linear_term[i] = param->p - prob->y[i]; y[i] = 1; alpha2[i+l] = 0; linear_term[i+l] = param->p + prob->y[i]; y[i+l] = -1; } Solver s; s.Solve(2*l, SVR_Q(*prob,*param), linear_term, y, alpha2, param->C, param->C, param->eps, si, param->shrinking); double sum_alpha = 0; for(i=0;i<l;i++) { alpha[i] = alpha2[i] - alpha2[i+l]; sum_alpha += fabs(alpha[i]); } info("nu = %f\n",sum_alpha/(param->C*l)); delete[] alpha2; delete[] linear_term; delete[] y;}static void solve_nu_svr( const svm_problem *prob, const svm_parameter *param, double *alpha, Solver::SolutionInfo* si){ int l = prob->l; double C = param->C; double *alpha2 = new double[2*l]; double *linear_term = new double[2*l]; schar *y = new schar[2*l]; int i; double sum = C * param->nu * l / 2; for(i=0;i<l;i++) { alpha2[i] = alpha2[i+l] = min(sum,C); sum -= alpha2[i]; linear_term[i] = - prob->y[i]; y[i] = 1; linear_term[i+l] = prob->y[i]; y[i+l] = -1; } Solver_NU s; s.Solve(2*l, SVR_Q(*prob,*param), linear_term, y, alpha2, C, C, param->eps, si, param->shrinking); info("epsilon = %f\n",-si->r); for(i=0;i<l;i++) alpha[i] = alpha2[i] - alpha2[i+l]; delete[] alpha2; delete[] linear_term; delete[] y;}//// decision_function//struct decision_function{ double *alpha; double rho; };decision_function svm_train_one( const svm_problem *prob, const svm_parameter *param, double Cp, double Cn){ double *alpha = Malloc(double,prob->l); Solver::SolutionInfo si; switch(param->svm_type) { case C_SVC: solve_c_svc(prob,param,alpha,&si,Cp,Cn); break; case NU_SVC: solve_nu_svc(prob,param,alpha,&si); break; case ONE_CLASS: solve_one_class(prob,param,alpha,&si); break; case EPSILON_SVR: solve_epsilon_svr(prob,param,alpha,&si); break; case NU_SVR: solve_nu_svr(prob,param,alpha,&si); break; } info("obj = %f, rho = %f\n",si.obj,si.rho); // output SVs int nSV = 0; int nBSV = 0; for(int i=0;i<prob->l;i++) { if(fabs(alpha[i]) > 0) { ++nSV; if(prob->y[i] > 0) { if(fabs(alpha[i]) >= si.upper_bound_p) ++nBSV; } else { if(fabs(alpha[i]) >= si.upper_bound_n) ++nBSV; } } } info("nSV = %d, nBSV = %d\n",nSV,nBSV); decision_function f; f.alpha = alpha; f.rho = si.rho; return f;}//// svm_model//struct svm_model{ svm_parameter param; // parameter int nr_class; // number of classes, = 2 in regression/one class svm int l; // total #SV svm_node **SV; // SVs (SV[l]) double **sv_coef; // coefficients for SVs in decision functions (sv_coef[n-1][l]) double *rho; // constants in decision functions (rho[n*(n-1)/2]) // for classification only int *label; // label of each class (label[n]) int *nSV; // number of SVs for each class (nSV[n]) // nSV[0] + nSV[1] + ... + nSV[n-1] = l // XXX int free_sv; // 1 if svm_model is created by svm_load_model // 0 if svm_model is created by svm_train};int get_svm_model_l(svm_model* model){ int l; l=model->l; return l;}int get_svm_model_nrclass(svm_model* model){ int l; l=model->nr_class; return l;}//// Interface functions//svm_model *svm_train(const svm_problem *prob, const svm_parameter *param){ svm_model *model = Malloc(svm_model,1); model->param = *param; model->free_sv = 0; // XXX if(param->svm_type == ONE_CLASS || param->svm_type == EPSILON_SVR || param->svm_type == NU_SVR) { // regression or one-class-svm model->nr_class = 2; model->label = NULL; model->nSV = NULL; model->sv_coef = Malloc(double *,1); decision_function f = svm_train_one(prob,param,0,0); model->rho = Malloc(double,1); model->rho[0] = f.rho; int nSV = 0; int i; for(i=0;i<prob->l;i++) if(fabs(f.alpha[i]) > 0) ++nSV; model->l = nSV; model->SV = Malloc(svm_node *,nSV); model->sv_coef[0] = Malloc(double,nSV); int j = 0; for(i=0;i<prob->l;i++) if(fabs(f.alpha[i]) > 0) { model->SV[j] = prob->x[i]; model->sv_coef[0][j] = f.alpha[i]; ++j; } free(f.alpha); } else { // classification // find out the number of classes int l = prob->l; int max_nr_class = 16; int nr_class = 0; int *label = Malloc(int,max_nr_class); int *count = Malloc(int,max_nr_class); int *index = Malloc(int,l); int i; for(i=0;i<l;i++) { int this_label = (int)prob->y[i]; int j; for(j=0;j<nr_class;j++) if(this_label == label[j]) { ++count[j]; break; } index[i] = j; if(j == nr_class) { if(nr_class == max_nr_class) { max_nr_class *= 2; label = (int *)realloc(label,max_nr_class*sizeof(int)); count = (int *)realloc(count,max_nr_class*sizeof(int)); } label[nr_class] = this_label; count[nr_class] = 1; ++nr_class; } } // group training data of the same class int *start = Malloc(int,nr_class); start[0] = 0; for(i=1;i<nr_class;i++) start[i] = start[i-1]+count[i-1]; svm_node **x = Malloc(svm_node *,l); for(i=0;i<l;i++) { x[start[index[i]]] = prob->x[i]; ++start[index[i]]; } start[0] = 0; for(i=1;i<nr_class;i++) start[i] = start[i-1]+count[i-1]; // calculate weighted C double *weighted_C = Malloc(double, nr_class); for(i=0;i<nr_class;i++) weighted_C[i] = param->C; for(i=0;i<param->nr_weight;i++) { int j; for(j=0;j<nr_class;j++) if(param->weight_label[i] == label[j]) break; if(j == nr_class) fprintf(stderr,"warning: class label %d specified in weight is not found\n", param->weight_label[i]); else weighted_C[j] *= param->weight[i]; } // train n*(n-1)/2 models bool *nonzero = Malloc(bool,l); for(i=0;i<l;i++) nonzero[i] = false; decision_function *f = Malloc(decision_function,nr_class*(nr_class-1)/2); int p = 0; for(i=0;i<nr_class;i++) for(int j=i+1;j<nr_class;j++) { svm_problem sub_prob; int si = start[i], sj = start[j]; int ci = count[i], cj = count[j]; sub_prob.l = ci+cj; sub_prob.x = Malloc(svm_node *,sub_prob.l); sub_prob.y = Malloc(double,sub_prob.l); int k; for(k=0;k<ci;k++) { sub_prob.x[k] = x[si+k]; sub_prob.y[k] = +1; } for(k=0;k<cj;k++) { sub_prob.x[ci+k] = x[sj+k]; sub_prob.y[ci+k] = -1; } f[p] = svm_train_one(&sub_prob,param,weighted_C[i],weighted_C[j]); for(k=0;k<ci;k++) if(!nonzero[si+k] && fabs(f[p].alpha[k]) > 0) nonzero[si+k] = true; for(k=0;k<cj;k++) if(!nonzero[sj+k] && fabs(f[p].alpha[ci+k]) > 0) nonzero[sj+k] = true; free(sub_prob.x); free(sub_prob.y); ++p; } // build output model->nr_class = nr_class; model->label = Malloc(int,nr_class); for(i=0;i<nr_class;i++) model->label[i] = label[i]; model->rho = Malloc(double,nr_class*(nr_class-1)/2); for(i=0;i<nr_class*(nr_class-1)/2;i++) model->rho[i] = f[i].rho; int total_sv = 0; int *nz_count = Malloc(int,nr_class); model->nSV = Malloc(int,nr_class); for(i=0;i<nr_class;i++) { int nSV = 0; for(int j=0;j<count[i];j++) if(nonzero[start[i]+j]) { ++nSV; ++total_sv; } model->nSV[i] = nSV; nz_count[i] = nSV; } info("Total nSV = %d\n",total_sv); model->l = total_sv; model->SV = Malloc(svm_node *,total_sv); p = 0; for(i=0;i<l;i++) if(nonzero[i]) model->SV[p++] = x[i]; int *nz_start = Malloc(int,nr_class); nz_start[0] = 0; for(i=1;i<nr_class;i++) nz_start[i] = nz_start[i-1]+nz_count[i-1]; model->sv_coef = Malloc(double *,nr_class-1); for(i=0;i<nr_class-1;i++) model->sv_coef[i] = Malloc(double,total_sv); p = 0; for(i=0;i<nr_class;i++) for(int j=i+1;j<nr_class;j++) { // classifier (i,j): coefficients with // i are in sv_coef[j-1][nz_start[i]...], // j are in sv_coef[i][nz_start[j]...] int si = start[i]; int sj = start[j]; int ci = count[i]; int cj = count[j]; int q = nz_start[i]; int k; for(k=0;k<ci;k++) if(nonzero[si+k]) model->sv_coef[j-1][q++] = f[p].alpha[k]; q = nz_start[j]; for(k=0;k<cj;k++) if(nonzero[sj+k]) model->sv_coef[i][q++] = f[p].alpha[ci+k]; ++p; } free(label); free(count); free(index); free(start); free(x); free(weighted_C); free(nonzero); for(i=0;i<nr_class*(nr_class-1)/2;i++) free(f[i].alpha); free(f); free(nz_count); free(nz_start);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -