📄 limits2.html
字号:
<P>The function returns the representation of positive infinityfor the type. The return value is meaningful only if<A HREF="#numeric_limits::has_infinity"><CODE>has_infinity</CODE></A> is true.</P><H3><A NAME="numeric_limits::is_bounded"><CODE>numeric_limits::is_bounded</CODE></A></H3><PRE>static const bool <B>is_bounded</B> = false;</PRE><P>The member stores true for a type that hasa bounded set of representable values (which is the casefor all predefined types).</P><H3><A NAME="numeric_limits::is_exact"><CODE>numeric_limits::is_exact</CODE></A></H3><PRE>static const bool <B>is_exact</B> = false;</PRE><P>The member stores true for a type that hasexact representations for all its values (which is the casefor all predefined integer types). A fixed-point or rationalrepresentation is also considered exact, but not a floating-pointrepresentation.</P><H3><A NAME="numeric_limits::is_iec559"><CODE>numeric_limits::is_iec559</CODE></A></H3><PRE>static const bool <B>is_iec559</B> = false;</PRE><P>The member stores true for a type that hasa representation conforming to<B><A NAME="IEC 559">IEC 559</A></B>, an internationalstandard for representing floating-point values (also known as<B><A NAME="IEEE 754">IEEE 754</A></B> in the USA).</P><H3><A NAME="numeric_limits::is_integer"><CODE>numeric_limits::is_integer</CODE></A></H3><PRE>static const bool <B>is_integer</B> = false;</PRE><P>The member stores true for a type that hasan integer representation (which is the case for allpredefined integer types).</P><H3><A NAME="numeric_limits::is_modulo"><CODE>numeric_limits::is_modulo</CODE></A></H3><PRE>static const bool <B>is_modulo</B> = false;</PRE><P>The member stores true for a type that has a<B><A NAME="modulo representation">modulo representation</A></B>,where all results are reduced modulo some value (which is thecase for all predefined unsigned integer types).</P><H3><A NAME="numeric_limits::is_signed"><CODE>numeric_limits::is_signed</CODE></A></H3><PRE>static const bool <B>is_signed</B> = false;</PRE><P>The member stores true for a type that hasa signed representation (which is the case for all predefinedfloating-point and signed integer types).</P><H3><A NAME="numeric_limits::is_specialized"><CODE>numeric_limits::is_specialized</CODE></A></H3><PRE>static const bool <B>is_specialized</B> = false;</PRE><P>The member stores true for a type that hasan explicit specialization defined for template class<A HREF="#numeric_limits"><CODE>numeric_limits</CODE></A>(which is the case for all scalar types other than pointers).</P><H3><A NAME="numeric_limits::max"><CODE>numeric_limits::max</CODE></A></H3><PRE>static Ty <B>max</B>() throw();</PRE><P>The function returns the maximum finite value for the type(which is<A HREF="limits.html#INT_MAX"><CODE>INT_MAX</CODE></A>for type <I>int</I> and<A HREF="float.html#FLT_MAX"><CODE>FLT_MAX</CODE></A>for type <I>float</I>). The return value is meaningful if<A HREF="#numeric_limits::is_bounded"><CODE>is_bounded</CODE></A> is true.</P><H3><A NAME="numeric_limits::max_exponent"><CODE>numeric_limits::max_exponent</CODE></A></H3><PRE>static const int <B>max_exponent</B> = 0;</PRE><P>The member stores the maximum positive integer such thatthe type can represent as a finite value<A HREF="#numeric_limits::radix"><CODE>radix</CODE></A> raised to that power(which is the value<A HREF="float.html#FLT_MAX_EXP"><CODE>FLT_MAX_EXP</CODE></A>for type <I>float</I>).Meaningful only for floating-point types.</P><H3><A NAME="numeric_limits::max_exponent10"><CODE>numeric_limits::max_exponent10</CODE></A></H3><PRE>static const int <B>max_exponent10</B> = 0;</PRE><P>The member stores the maximum positive integer such thatthe type can represent as a finite value10 raised to that power (which is the value<A HREF="float.html#FLT_MAX_10_EXP"><CODE>FLT_MAX_10_EXP</CODE></A>for type <I>float</I>).Meaningful only for floating-point types.</P><H3><A NAME="numeric_limits::min"><CODE>numeric_limits::min</CODE></A></H3><PRE>static Ty <B>min</B>() throw();</PRE><P>The function returns the minimum normalized value for the type(which is<A HREF="limits.html#INT_MIN"><CODE>INT_MIN</CODE></A>for type <I>int</I> and<A HREF="float.html#FLT_MIN"><CODE>FLT_MIN</CODE></A>for type <I>float</I>). The return value is meaningful if<A HREF="#numeric_limits::is_bounded"><CODE>is_bounded</CODE></A> is true or<CODE>is_bounded</CODE> is false and<A HREF="#numeric_limits::is_signed"><CODE>is_signed</CODE></A> is false.</P><H3><A NAME="numeric_limits::min_exponent"><CODE>numeric_limits::min_exponent</CODE></A></H3><PRE>static const int <B>min_exponent</B> = 0;</PRE><P>The member stores the minimum negative integer such thatthe type can represent as a normalized value<A HREF="#numeric_limits::radix"><CODE>radix</CODE></A> raised to that power(which is the value<A HREF="float.html#FLT_MIN_EXP"><CODE>FLT_MIN_EXP</CODE></A>for type <I>float</I>).Meaningful only for floating-point types.</P><H3><A NAME="numeric_limits::min_exponent10"><CODE>numeric_limits::min_exponent10</CODE></A></H3><PRE>static const int <B>min_exponent10</B> = 0;</PRE><P>The member stores the minimum negative integer such thatthe type can represent as a normalized value10 raised to that power(which is the value<A HREF="float.html#FLT_MIN_10_EXP"><CODE>FLT_MIN_10_EXP</CODE></A>for type <I>float</I>).Meaningful only for floating-point types.</P><H3><A NAME="numeric_limits::quiet_NaN"><CODE>numeric_limits::quiet_NaN</CODE></A></H3><PRE>static Ty <B>quiet_NaN</B>() throw();</PRE><P>The function returns a representation of a<A HREF="#quiet NaN">quiet NaN</A>for the type. The return value is meaningful only if<A HREF="#numeric_limits::has_quiet_NaN"><CODE>has_quiet_NaN</CODE></A> is true.</P><H3><A NAME="numeric_limits::radix"><CODE>numeric_limits::radix</CODE></A></H3><PRE>static const int <B>radix</B> = 0;</PRE><P>The member stores the base of the representationfor the type (which is 2 for the predefined integer types,and the base to which the exponent is raised, or<A HREF="float.html#FLT_RADIX"><CODE>FLT_RADIX</CODE></A>,for the predefined floating-point types).</P><H3><A NAME="numeric_limits::round_error"><CODE>numeric_limits::round_error</CODE></A></H3><PRE>static Ty <B>round_error</B>() throw();</PRE><P>The function returns the maximum rounding error for the type.</P><H3><A NAME="numeric_limits::round_style"><CODE>numeric_limits::round_style</CODE></A></H3><PRE>static const <A HREF="#float_round_style">float_round_style</A> <B>round_style</B> = round_toward_zero;</PRE><P>The member stores a value thatdescribes the vaious methods that an implementationcan choose for rounding a floating-point value to an integer value.</P><H3><A NAME="numeric_limits::signaling_NaN"><CODE>numeric_limits::signaling_NaN</CODE></A></H3><PRE>static Ty <B>signaling_NaN</B>() throw();</PRE><P>The function returns a representation of a<A HREF="#signaling NaN">signaling NaN</A>for the type. The return value is meaningful only if<A HREF="#numeric_limits::has_signaling_NaN"><CODE>has_signaling_NaN</CODE></A> is true.</P><H3><A NAME="numeric_limits::tinyness_before"><CODE>numeric_limits::tinyness_before</CODE></A></H3><PRE>static const bool <B>tinyness_before</B> = false;</PRE><P>The member stores true for a type that determineswhether a value is ``tiny'' (too small to represent asa normalized value) before rounding, an option with<A HREF="#IEC 559">IEC 559</A> floating-point representationsthat can affect some results.</P><H3><A NAME="numeric_limits::traps"><CODE>numeric_limits::traps</CODE></A></H3><PRE>static const bool <B>traps</B> = false;</PRE><P>The member stores true for a type that generates some kind of<A HREF="signal.html#signals">signal</A> to report certainarithmetic exceptions.</P><HR><P>See also the<B><A HREF="index.html#Table of Contents">Table of Contents</A></B> and the<B><A HREF="_index.html">Index</A></B>.</P><P><I><A HREF="crit_pjp.html">Copyright</A> © 1992-2002by P.J. Plauger. All rights reserved.</I></P><!--V4.01:1125--></BODY></HTML>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -