📄 kabuki.c
字号:
/***************************************************************************
"Kabuki" Z80 encryption
The "Kabuki" is a custom Z80 module which runs encrypted code. The encryption
key is stored in some battery-backed RAM, therefore the chip has the annoying
habit of stopping working every few years, when the battery dies.
Check at the bottom of this text to see a list of all the known games which
use this chip. They are only a handful, and there are probably no more (though
other versions might use different keys, like Super Pang / Super Buster Bros).
How it works:
The base operation is a bit swap which affects couples of adjacent bits.
Each of the 4 couples may or may not be swapped, depending on the address of
the byte and on whether it is an opcode or data.
The decryption consists of these steps:
- bitswap
- ROL
- bitswap
- XOR with a key
- ROL
- bitswap
- ROL
- bitswap
To know how to apply the byteswap, take the address of the byte to decode and:
- if the byte is an opcode, add addr_key to the address
- if the byte is data, XOR the address with 1FC0, add 1, and then add addr_key
You'll get a 16-bit word. The first two bitswaps depend on bits 0-7 of that
word, while the second two on bits 8-15. When a bit in the word is 1, swap the
two bits, oherwise don't. The exact couple of bits affected depends on the
game and is identified in this file with two keys: swap_key1 and swap_key2
(which are just permutations of the numbers 0-7, not full 32-bit integers).
Key space size:
- swap_key1 8! = 40320
- swap_key2 8! = 40320
- addr_key 2^16 = 65536
- xor_key 2^8 = 256
- total 2.7274 * 10^16
Weaknesses:
- 0x00 and 0xff, having all the bits set to the same value, are not affected
by bit permutations after the XOR. Therefore, their encryption is the same
regardless of the high 8 bits of the address, and of the value of
swap_key2. If there is a long stream of 0x00 or 0xff in the original data,
this can be used to find by brute force all the candidates for swap_key1,
xor_key, and for the low 8 bits of addr_key. This is a serious weakness
which dramatically reduces the security of the encrytion.
- A 0x00 is always encrypted as a byte with as many 1s as xor_key; a 0xff is
always encrypted as a byte with as many 0s as xor_key has 1s. So you just
need to know one 0x00 or 0xff in the unencrypted data to know how many 1s
there are in xor_key.
- Once you have restricted the range for swap_key1 and you know the number of
1s in the xor_key, you can easily use known plaintext attacks and brute
force to find the remaining keys. Long strings like THIS GAME IS FOR USE IN
and ABCDEFGHIJKLMNOPQRSTUVWXYZ can be found by comparing the number of 1s
in the clear and encrypted data, taking xor_key into account. When you have
found where the string is, use brute force to reduce the key space.
Known games:
swap_key1 swap_key2 addr_key xor_key
Pang / Buster Bros 32104567 76540123 6548 24
Super Pang 76540123 45673210 5852 43
Super Buster Bros 76540123 45673210 2130 12
Block Block 64201357 64201357 0002 01
Warriors of Fate 32104567 54162703 5151 51
Cadillacs and Dinosaurs 45673210 24607531 4343 43
Punisher 54762103 75314206 2222 22
Slam Masters 23451076 65437012 3131 19
***************************************************************************/
#include "driver.h"
static int bitswap(int src,int key,int select)
{
if (select & (1 << ((key >> 0) & 7)))
src = (src & 0xfc) | ((src & 0x01) << 1) | ((src & 0x02) >> 1);
if (select & (1 << ((key >> 4) & 7)))
src = (src & 0xf3) | ((src & 0x04) << 1) | ((src & 0x08) >> 1);
if (select & (1 << ((key >> 8) & 7)))
src = (src & 0xcf) | ((src & 0x10) << 1) | ((src & 0x20) >> 1);
if (select & (1 << ((key >>12) & 7)))
src = (src & 0x3f) | ((src & 0x40) << 1) | ((src & 0x80) >> 1);
return src;
}
static int bytedecode(int src,int swap_key1,int swap_key2,int xor_key,int select)
{
src = bitswap(src,swap_key1 & 0xffff,select & 0xff);
src = ((src & 0x7f) << 1) | ((src & 0x80) >> 7);
src = bitswap(src,swap_key1 >> 16,select & 0xff);
src ^= xor_key;
src = ((src & 0x7f) << 1) | ((src & 0x80) >> 7);
src = bitswap(src,swap_key2 & 0xffff,select >> 8);
src = ((src & 0x7f) << 1) | ((src & 0x80) >> 7);
src = bitswap(src,swap_key2 >> 16,select >> 8);
return src;
}
void kabuki_decode(unsigned char *src,unsigned char *dest_op,unsigned char *dest_data,
int base_addr,int length,int swap_key1,int swap_key2,int addr_key,int xor_key)
{
int A;
int select;
for (A = 0;A < length;A++)
{
/* decode opcodes */
select = (A + base_addr) + addr_key;
dest_op[A] = bytedecode(src[A],swap_key1,swap_key2,xor_key,select);
/* decode data */
select = ((A + base_addr) ^ 0x1fc0) + addr_key + 1;
dest_data[A] = bytedecode(src[A],swap_key1,swap_key2,xor_key,select);
}
}
extern int encrypted_cpu;
void bbros_decode(void)
{
int i;
unsigned char *RAM = Machine->memory_region[Machine->drv->cpu[0].memory_region];
kabuki_decode(RAM,ROM,RAM,0x0000,0x8000, 0x32104567,0x76540123,0x6548,0x24);
for (i = 0x10000;i < 0x30000;i += 0x4000)
kabuki_decode(RAM+i,ROM+i,RAM+i,0x8000,0x4000, 0x32104567,0x76540123,0x6548,0x24);
}
void spang_decode(void)
{
int i;
unsigned char *RAM = Machine->memory_region[Machine->drv->cpu[0].memory_region];
kabuki_decode(RAM,ROM,RAM,0x0000,0x8000, 0x76540123,0x45673210,0x5852,0x43);
for (i = 0x10000;i < 0x50000;i += 0x4000)
kabuki_decode(RAM+i,ROM+i,RAM+i,0x8000,0x4000, 0x76540123,0x45673210,0x5852,0x43);
}
void sbbros_decode(void)
{
int i;
unsigned char *RAM = Machine->memory_region[Machine->drv->cpu[0].memory_region];
kabuki_decode(RAM,ROM,RAM,0x0000,0x8000, 0x76540123,0x45673210,0x2130,0x12);
for (i = 0x10000;i < 0x50000;i += 0x4000)
kabuki_decode(RAM+i,ROM+i,RAM+i,0x8000,0x4000, 0x76540123,0x45673210,0x2130,0x12);
}
void block_decode(void)
{
int i;
unsigned char *RAM = Machine->memory_region[Machine->drv->cpu[0].memory_region];
kabuki_decode(RAM,ROM,RAM,0x0000,0x8000, 0x64201357,0x64201357,0x0002,0x01);
for (i = 0x10000;i < 0x50000;i += 0x4000)
kabuki_decode(RAM+i,ROM+i,RAM+i,0x8000,0x4000, 0x64201357,0x64201357,0x0002,0x01);
}
void wof_decode(void)
{
unsigned char *RAM = Machine->memory_region[Machine->drv->cpu[1].memory_region];
encrypted_cpu = 1;
kabuki_decode(RAM,ROM,RAM,0x0000,0x8000, 0x32104567,0x54162703,0x5151,0x51);
}
void dino_decode(void)
{
unsigned char *RAM = Machine->memory_region[Machine->drv->cpu[1].memory_region];
encrypted_cpu = 1;
kabuki_decode(RAM,ROM,RAM,0x0000,0x8000, 0x45673210,0x24607531,0x4343,0x43);
}
void punisher_decode(void)
{
unsigned char *RAM = Machine->memory_region[Machine->drv->cpu[1].memory_region];
encrypted_cpu = 1;
kabuki_decode(RAM,ROM,RAM,0x0000,0x8000, 0x54762103,0x75314206,0x2222,0x22);
}
void slammast_decode(void)
{
unsigned char *RAM = Machine->memory_region[Machine->drv->cpu[1].memory_region];
encrypted_cpu = 1;
kabuki_decode(RAM,ROM,RAM,0x0000,0x8000, 0x23451076,0x65437012,0x3131,0x19);
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -