⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 strmm.c

📁 NIST Handwriting OCR Testbed
💻 C
字号:
/** ======================================================================* NIST Guide to Available Math Software.* Source for module STRMM.C from package CBLAS.* Retrieved from NETLIB on Tue Mar 14 10:53:42 2000.* ======================================================================*//*  -- translated by f2c (version 19940927).   You must link the resulting object file with the libraries:	-lf2c -lm   (in that order)*/#include <f2c.h>/* Subroutine */ int strmm_(char *side, char *uplo, char *transa, char *diag, 	integer *m, integer *n, real *alpha, real *a, integer *lda, real *b, 	integer *ldb){    /* System generated locals */    integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3;    /* Local variables */    static integer info;    static real temp;    static integer i, j, k;    static logical lside;    extern logical lsame_(char *, char *);    static integer nrowa;    static logical upper;    extern /* Subroutine */ int xerbla_(char *, integer *);    static logical nounit;/*  Purpose       =======       STRMM  performs one of the matrix-matrix operations          B := alpha*op( A )*B,   or   B := alpha*B*op( A ),       where  alpha  is a scalar,  B  is an m by n matrix,  A  is a unit, or       non-unit,  upper or lower triangular matrix  and  op( A )  is one  of          op( A ) = A   or   op( A ) = A'.       Parameters       ==========       SIDE   - CHARACTER*1.                On entry,  SIDE specifies whether  op( A ) multiplies B from                the left or right as follows:                   SIDE = 'L' or 'l'   B := alpha*op( A )*B.                   SIDE = 'R' or 'r'   B := alpha*B*op( A ).                Unchanged on exit.       UPLO   - CHARACTER*1.                On entry, UPLO specifies whether the matrix A is an upper or                lower triangular matrix as follows:                   UPLO = 'U' or 'u'   A is an upper triangular matrix.                   UPLO = 'L' or 'l'   A is a lower triangular matrix.                Unchanged on exit.       TRANSA - CHARACTER*1.                On entry, TRANSA specifies the form of op( A ) to be used in                the matrix multiplication as follows:                   TRANSA = 'N' or 'n'   op( A ) = A.                   TRANSA = 'T' or 't'   op( A ) = A'.                   TRANSA = 'C' or 'c'   op( A ) = A'.                Unchanged on exit.       DIAG   - CHARACTER*1.                On entry, DIAG specifies whether or not A is unit triangular                as follows:                   DIAG = 'U' or 'u'   A is assumed to be unit triangular.                   DIAG = 'N' or 'n'   A is not assumed to be unit                                       triangular.                Unchanged on exit.       M      - INTEGER.                On entry, M specifies the number of rows of B. M must be at                least zero.                Unchanged on exit.       N      - INTEGER.                On entry, N specifies the number of columns of B.  N must be                at least zero.                Unchanged on exit.       ALPHA  - REAL            .                On entry,  ALPHA specifies the scalar  alpha. When  alpha is                zero then  A is not referenced and  B need not be set before                entry.                Unchanged on exit.       A      - REAL             array of DIMENSION ( LDA, k ), where k is m                when  SIDE = 'L' or 'l'  and is  n  when  SIDE = 'R' or 'r'.                Before entry  with  UPLO = 'U' or 'u',  the  leading  k by k                upper triangular part of the array  A must contain the upper                triangular matrix  and the strictly lower triangular part of                A is not referenced.                Before entry  with  UPLO = 'L' or 'l',  the  leading  k by k                lower triangular part of the array  A must contain the lower                triangular matrix  and the strictly upper triangular part of                A is not referenced.                Note that when  DIAG = 'U' or 'u',  the diagonal elements of                A  are not referenced either,  but are assumed to be  unity.                Unchanged on exit.       LDA    - INTEGER.                On entry, LDA specifies the first dimension of A as declared                in the calling (sub) program.  When  SIDE = 'L' or 'l'  then                LDA  must be at least  max( 1, m ),  when  SIDE = 'R' or 'r'                then LDA must be at least max( 1, n ).                Unchanged on exit.       B      - REAL             array of DIMENSION ( LDB, n ).                Before entry,  the leading  m by n part of the array  B must                contain the matrix  B,  and  on exit  is overwritten  by the                transformed matrix.       LDB    - INTEGER.                On entry, LDB specifies the first dimension of B as declared                in  the  calling  (sub)  program.   LDB  must  be  at  least                max( 1, m ).                Unchanged on exit.       Level 3 Blas routine.       -- Written on 8-February-1989.          Jack Dongarra, Argonne National Laboratory.          Iain Duff, AERE Harwell.          Jeremy Du Croz, Numerical Algorithms Group Ltd.          Sven Hammarling, Numerical Algorithms Group Ltd.          Test the input parameters.          Parameter adjustments          Function Body */#define A(I,J) a[(I)-1 + ((J)-1)* ( *lda)]#define B(I,J) b[(I)-1 + ((J)-1)* ( *ldb)]    lside = lsame_(side, "L");    if (lside) {	nrowa = *m;    } else {	nrowa = *n;    }    nounit = lsame_(diag, "N");    upper = lsame_(uplo, "U");    info = 0;    if (! lside && ! lsame_(side, "R")) {	info = 1;    } else if (! upper && ! lsame_(uplo, "L")) {	info = 2;    } else if (! lsame_(transa, "N") && ! lsame_(transa, "T") 	    && ! lsame_(transa, "C")) {	info = 3;    } else if (! lsame_(diag, "U") && ! lsame_(diag, "N")) {	info = 4;    } else if (*m < 0) {	info = 5;    } else if (*n < 0) {	info = 6;    } else if (*lda < max(1,nrowa)) {	info = 9;    } else if (*ldb < max(1,*m)) {	info = 11;    }    if (info != 0) {	xerbla_("STRMM ", &info);	return 0;    }/*     Quick return if possible. */    if (*n == 0) {	return 0;    }/*     And when  alpha.eq.zero. */    if (*alpha == 0.f) {	i__1 = *n;	for (j = 1; j <= *n; ++j) {	    i__2 = *m;	    for (i = 1; i <= *m; ++i) {		B(i,j) = 0.f;/* L10: */	    }/* L20: */	}	return 0;    }/*     Start the operations. */    if (lside) {	if (lsame_(transa, "N")) {/*           Form  B := alpha*A*B. */	    if (upper) {		i__1 = *n;		for (j = 1; j <= *n; ++j) {		    i__2 = *m;		    for (k = 1; k <= *m; ++k) {			if (B(k,j) != 0.f) {			    temp = *alpha * B(k,j);			    i__3 = k - 1;			    for (i = 1; i <= k-1; ++i) {				B(i,j) += temp * A(i,k);/* L30: */			    }			    if (nounit) {				temp *= A(k,k);			    }			    B(k,j) = temp;			}/* L40: */		    }/* L50: */		}	    } else {		i__1 = *n;		for (j = 1; j <= *n; ++j) {		    for (k = *m; k >= 1; --k) {			if (B(k,j) != 0.f) {			    temp = *alpha * B(k,j);			    B(k,j) = temp;			    if (nounit) {				B(k,j) *= A(k,k);			    }			    i__2 = *m;			    for (i = k + 1; i <= *m; ++i) {				B(i,j) += temp * A(i,k);/* L60: */			    }			}/* L70: */		    }/* L80: */		}	    }	} else {/*           Form  B := alpha*B*A'. */	    if (upper) {		i__1 = *n;		for (j = 1; j <= *n; ++j) {		    for (i = *m; i >= 1; --i) {			temp = B(i,j);			if (nounit) {			    temp *= A(i,i);			}			i__2 = i - 1;			for (k = 1; k <= i-1; ++k) {			    temp += A(k,i) * B(k,j);/* L90: */			}			B(i,j) = *alpha * temp;/* L100: */		    }/* L110: */		}	    } else {		i__1 = *n;		for (j = 1; j <= *n; ++j) {		    i__2 = *m;		    for (i = 1; i <= *m; ++i) {			temp = B(i,j);			if (nounit) {			    temp *= A(i,i);			}			i__3 = *m;			for (k = i + 1; k <= *m; ++k) {			    temp += A(k,i) * B(k,j);/* L120: */			}			B(i,j) = *alpha * temp;/* L130: */		    }/* L140: */		}	    }	}    } else {	if (lsame_(transa, "N")) {/*           Form  B := alpha*B*A. */	    if (upper) {		for (j = *n; j >= 1; --j) {		    temp = *alpha;		    if (nounit) {			temp *= A(j,j);		    }		    i__1 = *m;		    for (i = 1; i <= *m; ++i) {			B(i,j) = temp * B(i,j);/* L150: */		    }		    i__1 = j - 1;		    for (k = 1; k <= j-1; ++k) {			if (A(k,j) != 0.f) {			    temp = *alpha * A(k,j);			    i__2 = *m;			    for (i = 1; i <= *m; ++i) {				B(i,j) += temp * B(i,k);/* L160: */			    }			}/* L170: */		    }/* L180: */		}	    } else {		i__1 = *n;		for (j = 1; j <= *n; ++j) {		    temp = *alpha;		    if (nounit) {			temp *= A(j,j);		    }		    i__2 = *m;		    for (i = 1; i <= *m; ++i) {			B(i,j) = temp * B(i,j);/* L190: */		    }		    i__2 = *n;		    for (k = j + 1; k <= *n; ++k) {			if (A(k,j) != 0.f) {			    temp = *alpha * A(k,j);			    i__3 = *m;			    for (i = 1; i <= *m; ++i) {				B(i,j) += temp * B(i,k);/* L200: */			    }			}/* L210: */		    }/* L220: */		}	    }	} else {/*           Form  B := alpha*B*A'. */	    if (upper) {		i__1 = *n;		for (k = 1; k <= *n; ++k) {		    i__2 = k - 1;		    for (j = 1; j <= k-1; ++j) {			if (A(j,k) != 0.f) {			    temp = *alpha * A(j,k);			    i__3 = *m;			    for (i = 1; i <= *m; ++i) {				B(i,j) += temp * B(i,k);/* L230: */			    }			}/* L240: */		    }		    temp = *alpha;		    if (nounit) {			temp *= A(k,k);		    }		    if (temp != 1.f) {			i__2 = *m;			for (i = 1; i <= *m; ++i) {			    B(i,k) = temp * B(i,k);/* L250: */			}		    }/* L260: */		}	    } else {		for (k = *n; k >= 1; --k) {		    i__1 = *n;		    for (j = k + 1; j <= *n; ++j) {			if (A(j,k) != 0.f) {			    temp = *alpha * A(j,k);			    i__2 = *m;			    for (i = 1; i <= *m; ++i) {				B(i,j) += temp * B(i,k);/* L270: */			    }			}/* L280: */		    }		    temp = *alpha;		    if (nounit) {			temp *= A(k,k);		    }		    if (temp != 1.f) {			i__1 = *m;			for (i = 1; i <= *m; ++i) {			    B(i,k) = temp * B(i,k);/* L290: */			}		    }/* L300: */		}	    }	}    }    return 0;/*     End of STRMM . */} /* strmm_ */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -