📄 lbfgs.c
字号:
r1 = -work[inmc]; saxpy_(&n, &r1, &work[iycn + 1], &one, &work[1], &one); } for(i = 1; i <= n; i++) work[i] = diag[i] * work[i]; for(i = 1; i <= bound; i++) { yr = sdot_(&n, &work[iypt + cp * n + 1], &one, &work[1], &one); beta = work[n + cp + 1] * yr; inmc = n + m + cp + 1; beta = work[inmc] - beta; iscn = ispt + cp * n; saxpy_(&n, &beta, &work[iscn + 1], &one, &work[1], &one); if(++cp == m) cp = 0; } /* ------------------------------- Store the new search direction. ------------------------------- */ for(i = 1; i <= n; i++) work[ispt + point * n + i] = work[i]; /* ------------------------------------------------------------- Obtain the one-dimensional minimizer of the function by using the line search routine mcsrch. ------------------------------------------------------------- */ L165: nfev = 0; *stp = 1.; if(*iter == 1) *stp = stp1; for(i = 1; i <= n; i++) work[i] = g[i];#ifdef SURVEY survey(n, &x[1], &work[ispt + point * n + 1], *stp); sprintf(str, " calling mcsrch with *stp %e\n\n", *stp); fsaso(str);#endif L172: mcsrch(n, &x[1], f, &g[1], &work[ispt + point * n + 1], stp, ftol, gtol, xtol, stpmin, stpmax, maxfev, info, &nfev, &diag[1], fp_err); if(*info == -1) { *iflag = 1; return; } if(*info != 1) goto L190; nfun += nfev; /* ----------------------------------------- Compute the new step and gradient change. ----------------------------------------- */ npt = point * n; for(i = 1; i <= n; i++) { work[ispt + npt + i] = *stp * work[ispt + npt + i]; work[iypt + npt + i] = g[i] - work[i]; } if(++point == m) point = 0; /* ----------------- Termination test. ---------------- */ gnorm = snrm2_(&n, &g[1], &one); xnorm = snrm2_(&n, &x[1], &one); xnorm = (int)max(1., xnorm); /* jlb change: The original Fortran had IF (GNORM/XNORM .LE. EPS) FINISH=.TRUE. here, but now the gnorm/xnorm termination is handled by optchk(). */ if(iprint[1] >= 0) lb1(&iprint[1], *iter, nfun, gnorm, n, m, &x[1], f, &g[1], *stp, finish, fp_mon); optchk(FALSE, *itopt, &x[1], f, ierr, &pctmin_junk); if(*ierr != 0) { *iflag = 10; return; } if(finish) { *iflag = 0; return; } goto L80; /* ----------------------------------------- End of main iteration loop. Error exits. ----------------------------------------- */ L190: *iflag = -1; if(fp_err != (FILE *)NULL) fprintf(fp_err, "\n *iflag == -1\n line search failed. see \documentation of routine mcsrch\n error return of line search: \*info = %d\n possible causes: function or gradient are incorrect or \incorrect tolerances\n", *info); return; L195: *iflag = -2; if(fp_err != (FILE *)NULL) fprintf(fp_err, "\n *iflag == -2\n the %d-th diagonal element of \the\n inverse Hessian approximation is not positive\n", i); return; L196: *iflag = -3; if(fp_err != (FILE *)NULL) fprintf(fp_err, "\n *iflag == -3\n improper input parameters \(n or m is not positive)\n"); return;}/* end of function lbfgs *//*******************************************************************/ /* ------------ function lb1 ------------ Prints monitoring information. The frequency and amount of output are controlled by iprint. Input args: iprint: Array of two ints, controlling printing. iter: nfun: gnorm: n: m: x: f: g: stp: finish: fp_mon;*/voidlb1(iprint, iter, nfun, gnorm, n, m, x, f, g, stp, finish, fp_mon)int *iprint, iter, nfun, n, m, finish;float gnorm, *x, f, *g, stp;FILE *fp_mon;{ int i; static int one = 1; static float gbyx, xnorm; /* parameter adjustments */ --g; --x; --iprint; /* jlb added next line (gtc changed use of sdot_ and sqrt, to a call of snrm2): */ xnorm = snrm2_(&n, &x[1], &one); gbyx = 0.; if(xnorm > 0.) gbyx = gnorm / xnorm; if(iter == 0) { fprintf(fp_mon, "**********************************************\***\n"); fprintf(fp_mon, " n = %d number of corrections = %d\n\ initial values:\n", n, m); fprintf(fp_mon, " f = %10.3e gnorm = %10.3e\n", f, gnorm); if(iprint[2] >= 1) { fprintf(fp_mon, " vector x = "); for(i = 0; i < n; i++) fprintf(fp_mon, " %10.3e", x[i]); fprintf(fp_mon, "\n"); fprintf(fp_mon, " gradient vector g = "); for(i = 0; i < n; i++) fprintf(fp_mon, " %10.3e", g[i]); fprintf(fp_mon, "\n"); } fprintf(fp_mon, "**********************************************\***\n"); fprintf(fp_mon, "\n i nfn func gnorm \steplength\n"); } else { if(iprint[1] == 0 && (iter != 1 && !finish)) return; if(iprint[1] != 0) { if((iter - 1) % iprint[1] == 0 || finish) { if(iprint[2] > 1 && iter > 1) fprintf(fp_mon, "\n i nfn func gnorm \steplength\n"); fprintf(fp_mon, "%d %d %10.3e %10.3e %10.3e %10.3e\n", iter, nfun, f, gnorm, stp, gbyx); } else return; } else { if(iprint[2] > 1 && finish) fprintf(fp_mon, "\n i nfn func gnorm \steplength\n"); fprintf(fp_mon, "%d %d %10.3e %10.3e %10.3e %10.3e\n", iter, nfun, f, gnorm, stp, gbyx); } if(iprint[2] == 2 || iprint[2] == 3) { if(finish) fprintf(fp_mon, " final point x = "); else fprintf(fp_mon, " vector x = "); for(i = 0; i < n; i++) fprintf(fp_mon, " %10.3e", x[i]); fprintf(fp_mon, "\n"); if(iprint[2] == 3) { fprintf(fp_mon, " gradient vector g = "); for(i = 0; i < n; i++) fprintf(fp_mon, " %10.3e", g[i]); fprintf(fp_mon, "\n"); } } if(finish) fprintf(fp_mon, "\n the minimization terminated without \detecting errors.\n iflag = 0\n"); } return;}/* end of function lb1 *//*******************************************************************/ /* --------------- function mcsrch --------------- A slight modification of the subroutine CSRCH of More' and Thuente. The changes are to allow reverse communication, and do not affect the performance of the routine. The purpose of mcsrch is to find a step which satisfies a sufficient decrease condition and a curvature condition. At each stage mcsrch updates an interval of uncertainty with endpoints stx and sty. The interval of uncertainty is initially chosen so that it contains a minimizer of the modified function f(x+stp*s) - f(x) - ftol*stp*(gradf(x)'s). If a step is obtained for which the modified function has a nonpositive function value and nonnegative derivative, then the interval of uncertainty is chosen so that it contains a minimizer of f(x+stp*s). The algorithm is designed to find a step which satisfies the sufficient decrease condition f(x+stp*s) <= f(x) + ftol*stp*(gradf(x)'s), and the curvature condition abs(gradf(x+stp*s)'s)) <= gtol*abs(gradf(x)'s). If ftol is less than gtol and if, for example, the function is bounded below, then there is always a step which satisfies both conditions. If no step can be found which satisfies both conditions, then the algorithm usually stops when rounding errors prevent further progress. In this case stp only satisfies the sufficient decrease condition. The calling statement is mcsrch(n, x, f, g, s, stp, ftol, gtol, xtol, stpmin, stpmax, maxfev, info, nfev, wa, fp_err); where n is a positive integer input variable set to the number of variables. x is an array of length n. On input it must contain the base point for the line search. On output it contains x + stp*s. f is a variable. On input it must contain the value of f at x. On output it contains the value of f at x + stp*s. g is an array of length n. On input it must contain the gradient of f at x. On output it contains the gradient of f at x + stp*s. s is an input array of length n which specifies the search direction. stp is a nonnegative variable. On input stp contains an initial estimate of a satisfactory step. On output stp contains the final estimate. ftol and gtol are nonnegative input variables. Termination occurs when the sufficient decrease condition and the directional derivative condition are satisfied. xtol is a nonnegative input variable. Termination occurs when the relative width of the interval of uncertainty is at most xtol. stpmin and stpmax are nonnegative input variables which specify lower and upper bounds for the step. maxfev is a positive integer input variable. Termination occurs when the number of calls to fcn is at least maxfev by the end of an iteration. info is an integer output variable set as follows: info == 0 Improper input parameters. info == -1 A return is made to compute the function and gradient. info == 1 The sufficient decrease condition and the directional derivative condition hold. info == 2 Relative width of the interval of uncertainty is at most xtol. info == 3 Number of calls to fcn has reached maxfev. info == 4 The step is at the lower bound stpmin. info == 5 The step is at the upper bound stpmax. info == 6 Rounding errors prevent further progress. There may not be a step which satisfies the sufficient decrease and curvature conditions. Tolerances may be too small. nfev is an integer output variable set to the number of calls to fcn. wa is a work array of length n. fp_err is a FILE pointer to which to write error messages. If it is (FILE *)NULL, then no error messages are produced. Subprograms called: mcstep (source in this file) Argonne National Laboratory. MINPACK Project. June 1983. Jorge J. More', David J. Thuente. */voidmcsrch(n, x, f, g, s, stp, ftol, gtol, xtol, stpmin, stpmax, maxfev, info, nfev, wa, fp_err)int n, maxfev, *info, *nfev;float *x, f, *g, *s, *stp, ftol, gtol, xtol, stpmin, stpmax, *wa;FILE *fp_err;{ static int j, infoc, stage1, brackt, one = 1; /* float r1; */ static float dgxm, dgym, finit, width, stmin, stmax, width1, ftest1, dg, fm, gs, fx, fy, dginit, dgtest, dgm, dgx, dgy, fxm, fym, stx, sty; void mcstep();#define XTRAPF 4. /* parameter adjustments */ --wa; --s; --g; --x; if(*info == -1) goto L45; gs = sdot_(&n, &g[1], &one, &s[1], &one) / (snrm2_(&n, &g[1], &one) * snrm2_(&n, &s[1], &one)); infoc = 1; /* Check the input parameters for errors. */ if(n <= 0 || *stp <= 0. || ftol < 0. || gtol < 0. || xtol < 0. || stpmin < 0. || stpmax < stpmin || maxfev <= 0) return; /* Compute the initial gradient in the search direction and check that s is a descent direction. */ dginit = 0.; for(j = 1; j <= n; j++) dginit += g[j] * s[j]; if(dginit >= 0.) { if(fp_err != (FILE *)NULL) fprintf(fp_err, "\n the search direction is not a descent \direction\n"); return; } /* Initialize local variables. */ brackt = FALSE; stage1 = TRUE; *nfev = 0; finit = f; dgtest = ftol * dginit;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -