⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 kalman_filter.m

📁 给出了关于卡尔曼滤波器的详细说明
💻 M
字号:
function [x, V, VV, loglik] = kalman_filter(y, A, C, Q, R, init_x, init_V, model)% Kalman filter.% [x, V, VV, loglik] = kalman_filter(y, A, C, Q, R, init_x, init_V, model)%% Inputs:% y(:,t)   - the observation at time t% A(:,:,m) - the system matrix for model m% C(:,:,m) - the observation matrix for model m% Q(:,:,m) - the system covariance for model m% R(:,:,m) - the observation covariance for model m% init_x(:,m) - the initial state for model m% init_V(:,:,m) - the initial covariance for model m% model(t) - which model to use at time t (defaults to model 1 if not specified)%% Outputs:% x(:,t) = E[X_t | t]% V(:,:,t) = Cov[X_t | t]% VV(:,:,t) = Cov[X_t, X_t-1 | t] t >= 2% loglik = sum_t log P(Y_t)[os T] = size(y);ss = size(A,1);if nargin<8, model = ones(1, T); endx = zeros(ss, T);V = zeros(ss, ss, T);VV = zeros(ss, ss, T);loglik = 0;for t=1:T  m = model(t);  if t==1    prevx = init_x(:,m);    prevV = init_V(:,:,m);    initial = 1;  else    prevx = x(:,t-1);    prevV = V(:,:,t-1);    initial = 0;  end  [x(:,t), V(:,:,t), LL, VV(:,:,t)] = ...      kalman_update(A(:,:,m), C(:,:,m), Q(:,:,m), R(:,:,m), y(:,t), prevx, prevV, initial);  loglik = loglik + LL;end

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -