⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 sparsetrainer.java

📁 CRF1.2
💻 JAVA
📖 第 1 页 / 共 2 页
字号:
            if (params.debugLvl > 2) {                for (int f = 0; f < lambda.length; f++)                    System.out.print(lambda[f] + " ");                System.out.println(" :x");                for (int f = 0; f < lambda.length; f++)                    System.out.print(grad[f] + " ");                System.out.println(" :g");            }                        if (params.debugLvl > 0)                Util.printDbg("Iter " + icall + " log likelihood "+logli + " norm(grad logli) " + norm(grad) + " norm(x) "+ norm(lambda));                    } catch (Exception e) {            System.out.println("Alpha-i " + alpha_Y.toString());            System.out.println("Ri " + Ri_Y.toString());            System.out.println("Mi " + Mi_YY.toString());                        e.printStackTrace();            System.exit(0);        }        return logli;    }        static void computeLogMi(FeatureGenerator featureGen, double lambda[],             DoubleMatrix2D Mi_YY,            DoubleMatrix1D Ri_Y) {        double DEFAULT_VALUE = 0;        Mi_YY.assign(DEFAULT_VALUE);        Ri_Y.assign(DEFAULT_VALUE);        computeLogMiInitDone(featureGen,lambda,Mi_YY,Ri_Y, DEFAULT_VALUE);    }    static void computeLogMiInitDone(FeatureGenerator featureGen, double lambda[],             DoubleMatrix2D Mi_YY,            DoubleMatrix1D Ri_Y, double DEFAULT_VALUE) {        while (featureGen.hasNext()) {             Feature feature = featureGen.next();            int f = feature.index();            int yp = feature.y();            int yprev = feature.yprev();            float val = feature.value();            if (yprev == -1) {                // this is a single state feature.                                // if default value was a negative_infinity, need to                // reset to.                double oldVal = Ri_Y.get(yp);                if (oldVal == DEFAULT_VALUE)                    oldVal = 0;                Ri_Y.set(yp,oldVal+lambda[f]*val);            } else if (Mi_YY != null) {                double oldVal = Mi_YY.get(yprev,yp);                if (oldVal == DEFAULT_VALUE) {                    oldVal = 0;                    if (Ri_Y.get(yp) == DEFAULT_VALUE)                        Ri_Y.set(yp,0);                }                Mi_YY.set(yprev,yp,oldVal+lambda[f]*val);            }        }    }    static void computeMi(FeatureGenerator featureGen, double lambda[],             DataSequence dataSeq, int i,             DoubleMatrix2D Mi_YY,            DoubleMatrix1D Ri_Y) {        featureGen.startScanFeaturesAt(dataSeq, i);        computeLogMi(featureGen, lambda, Mi_YY, Ri_Y);	        Ri_Y.assign(expFunc);        Mi_YY.assign(expFunc);        //	Mi_YY.forEachNonZero(expFunc2D);    }    static void computeLogMi(FeatureGenerator featureGen, double lambda[],             DataSequence dataSeq, int i,             DoubleMatrix2D Mi_YY,            DoubleMatrix1D Ri_Y) {        featureGen.startScanFeaturesAt(dataSeq, i);        computeLogMi(featureGen, lambda, Mi_YY, Ri_Y);	    }        protected double computeFunctionGradientLL(double lambda[], double grad[]) {        double logli = 0;        try {            for (int f = 0; f < lambda.length; f++) {                grad[f] = -1*lambda[f]*params.invSigmaSquare;                logli -= ((lambda[f]*lambda[f])*params.invSigmaSquare)/2;            }            diter.startScan();            if (featureGenCache != null) featureGenCache.startDataScan();            for (int numRecord = 0; diter.hasNext(); numRecord++) {                DataSequence dataSeq = (DataSequence)diter.next();                if (featureGenCache != null) featureGenCache.nextDataIndex();                if (params.debugLvl > 1) {                    Util.printDbg("Read next seq: " + numRecord + " logli " + logli);                }                alpha_Y.assign(0);                for (int f = 0; f < lambda.length; f++)                    ExpF[f] = RobustMath.LOG0;                                if ((beta_Y == null) || (beta_Y.length < dataSeq.length())) {                    beta_Y = new DoubleMatrix1D[2*dataSeq.length()];                    for (int i = 0; i < beta_Y.length; i++)                        beta_Y[i] = newLogDoubleMatrix1D(numY);                }                // compute beta values in a backward scan.                // also scale beta-values to 1 to avoid numerical problems.                beta_Y[dataSeq.length()-1].assign(0);                for (int i = dataSeq.length()-1; i > 0; i--) {                    if (params.debugLvl > 3) {                        Util.printDbg("Features fired");                        featureGenerator.startScanFeaturesAt(dataSeq, i);                            while (featureGenerator.hasNext()) {                             Feature feature = featureGenerator.next();                            Util.printDbg(feature.toString());                        }                    }                                        // compute the Mi matrix                    computeLogMi(featureGenerator,lambda,dataSeq,i,Mi_YY,Ri_Y);                    tmp_Y.assign(beta_Y[i]);                    tmp_Y.assign(Ri_Y,sumFunc);                    Mi_YY.zMult(tmp_Y, beta_Y[i-1],1,0,false);                }                                                double thisSeqLogli = 0;                for (int i = 0; i < dataSeq.length(); i++) {                    // compute the Mi matrix                    computeLogMi(featureGenerator,lambda,dataSeq,i,Mi_YY,Ri_Y);                    // find features that fire at this position..                    featureGenerator.startScanFeaturesAt(dataSeq, i);                                        if (i > 0) {                        //tmp_Y.assign(alpha_Y);                        Mi_YY.zMult(alpha_Y, newAlpha_Y,1,0,true);                        newAlpha_Y.assign(Ri_Y,sumFunc);                     } else {                        newAlpha_Y.assign(Ri_Y);                    }                                        while (featureGenerator.hasNext()) {                         Feature feature = featureGenerator.next();                        int f = feature.index();                                                int yp = feature.y();                        int yprev = feature.yprev();                        float val = feature.value();                        if ((dataSeq.y(i) == yp) && (((i-1 >= 0) && (yprev == dataSeq.y(i-1))) || (yprev < 0))) {                            grad[f] += val;                            thisSeqLogli += val*lambda[f];                        }                        if (yprev < 0) {                            ExpF[f] = RobustMath.logSumExp(ExpF[f], newAlpha_Y.get(yp) + RobustMath.log(val) + beta_Y[i].get(yp));                        } else {                            ExpF[f] = RobustMath.logSumExp(ExpF[f], alpha_Y.get(yprev)+Ri_Y.get(yp)+Mi_YY.get(yprev,yp)+RobustMath.log(val)+beta_Y[i].get(yp));                        }                    }                    alpha_Y.assign(newAlpha_Y);                                        if (params.debugLvl > 2) {                        System.out.println("Alpha-i " + alpha_Y.toString());                        System.out.println("Ri " + Ri_Y.toString());                        System.out.println("Mi " + Mi_YY.toString());                        System.out.println("Beta-i " + beta_Y[i].toString());                    }                }                double lZx = alpha_Y.zSum();                thisSeqLogli -= lZx;                logli += thisSeqLogli;                // update grad.                for (int f = 0; f < grad.length; f++)                    grad[f] -= RobustMath.exp(ExpF[f]-lZx);                                if (params.debugLvl > 1) {                    System.out.println("Sequence "  + thisSeqLogli + " " + logli );                }                if (thisSeqLogli > 0) {                    System.out.println("This is shady: something is wrong Pr(y|x) > 1!");                }            }            if (params.debugLvl > 2) {                for (int f = 0; f < lambda.length; f++)                    System.out.print(lambda[f] + " ");                System.out.println(" :x");                for (int f = 0; f < lambda.length; f++)                    System.out.print(grad[f] + " ");                System.out.println(" :g");            }                        if (params.debugLvl > 0)                Util.printDbg("Iteration " + icall + " log-likelihood "+logli + " norm(grad logli) " + norm(grad) + " norm(x) "+ norm(lambda));                    } catch (Exception e) {            System.out.println("Alpha-i " + alpha_Y.toString());            System.out.println("Ri " + Ri_Y.toString());            System.out.println("Mi " + Mi_YY.toString());                        e.printStackTrace();            System.exit(0);        }        return logli;    } }

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -