⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 sparsetrainer.java

📁 CRF1.2
💻 JAVA
📖 第 1 页 / 共 2 页
字号:
package iitb.CRF;import cern.colt.function.*;import cern.colt.matrix.*;import cern.colt.matrix.impl.*;/** * * @author Sunita Sarawagi * */ public class SparseTrainer extends Trainer {    boolean logTrainer;    static class  ExpFunc implements DoubleFunction {        public double apply(double a) {return Math.exp(a);}    };    static class ExpFunc2D implements IntIntDoubleFunction {        public double apply(int first, int second, double third) {            return Math.exp(third);        }    };    static class ExpFunc1D implements IntDoubleFunction {        public double apply(int first, double third) {            return Math.exp(third);        }    };        static ExpFunc expFunc = new ExpFunc();     static IntDoubleFunction expFunc1D = new ExpFunc1D();    static IntIntDoubleFunction expFunc2D = new ExpFunc2D();        /**     * @param numY     * @return     */    protected DoubleMatrix1D newLogDoubleMatrix1D(int numY) {        if ((Boolean.valueOf(params.miscOptions.getProperty("sparse", "false"))).booleanValue())            return new LogSparseDoubleMatrix1D(numY);        return new LogDenseDoubleMatrix1D(numY);    }        protected DoubleMatrix2D newLogDoubleMatrix2D(int numR, int numC) {        if ((Boolean.valueOf(params.miscOptions.getProperty("sparse", "false"))).booleanValue())            return new LogSparseDoubleMatrix2D(numR, numC);        return new LogDenseDoubleMatrix2D(numR, numC);    }    public SparseTrainer(CrfParams p) {        super(p);        params = p;        logTrainer = params.trainerType.equals("ll");    }    public void train(CRF model, DataIter data, double[] l, Evaluator eval) {        init(model,data,l);        evaluator = eval;        if (params.debugLvl > 0) {            Util.printDbg("Number of features :" + lambda.length);	            }        doTrain();    }    void initMatrices() {                if (!logTrainer) {            Mi_YY = new SparseDoubleMatrix2D(numY,numY);            Ri_Y = new SparseDoubleMatrix1D(numY);            alpha_Y = new SparseDoubleMatrix1D(numY);            newAlpha_Y = new SparseDoubleMatrix1D(numY);            tmp_Y = new SparseDoubleMatrix1D(numY);        } else {            Mi_YY = newLogDoubleMatrix2D(numY,numY);            Ri_Y = newLogDoubleMatrix1D(numY);            alpha_Y = newLogDoubleMatrix1D(numY);            newAlpha_Y = newLogDoubleMatrix1D(numY);            tmp_Y = newLogDoubleMatrix1D(numY);                    }    }        protected double computeFunctionGradient(double lambda[], double grad[]) {        if (params.trainerType.equals("ll"))            return computeFunctionGradientLL(lambda,  grad);        double logli = 0;        try {            for (int f = 0; f < lambda.length; f++) {                grad[f] = -1*lambda[f]*params.invSigmaSquare;                logli -= ((lambda[f]*lambda[f])*params.invSigmaSquare)/2;            }            boolean doScaling = params.doScaling;                        diter.startScan();            if (featureGenCache != null) featureGenCache.startDataScan();            for (int numRecord = 0; diter.hasNext(); numRecord++) {                DataSequence dataSeq = (DataSequence)diter.next();                if (featureGenCache != null) featureGenCache.nextDataIndex();                if (params.debugLvl > 1) {                    Util.printDbg("Read next seq: " + numRecord + " logli " + logli);                }                alpha_Y.assign(1);                for (int f = 0; f < lambda.length; f++)                    ExpF[f] = 0;                                if ((beta_Y == null) || (beta_Y.length < dataSeq.length())) {                    beta_Y = new DoubleMatrix1D[2*dataSeq.length()];                    for (int i = 0; i < beta_Y.length; i++)                        beta_Y[i] = new SparseDoubleMatrix1D(numY);                                        scale = new double[2*dataSeq.length()];                }                // compute beta values in a backward scan.                // also scale beta-values to 1 to avoid numerical problems.                scale[dataSeq.length()-1] = (doScaling)?numY:1;                beta_Y[dataSeq.length()-1].assign(1.0/scale[dataSeq.length()-1]);                for (int i = dataSeq.length()-1; i > 0; i--) {                    if (params.debugLvl > 2) {                        Util.printDbg("Features fired");                        //featureGenerator.startScanFeaturesAt(dataSeq, i);                            //while (featureGenerator.hasNext()) {                         //Feature feature = featureGenerator.next();                        //Util.printDbg(feature.toString());                        //}                    }                                        // compute the Mi matrix                    computeMi(featureGenerator,lambda,dataSeq,i,Mi_YY,Ri_Y);                    tmp_Y.assign(beta_Y[i]);                    tmp_Y.assign(Ri_Y,multFunc);                    // RobustMath.Mult(Mi_YY, tmp_Y, beta_Y[i-1],1,0,false,edgeGen);                    Mi_YY.zMult(tmp_Y, beta_Y[i-1]);                                        // need to scale the beta-s to avoid overflow                    scale[i-1] = doScaling?beta_Y[i-1].zSum():1;                    if ((scale[i-1] < 1) && (scale[i-1] > -1))                        scale[i-1] = 1;                    constMultiplier.multiplicator = 1.0/scale[i-1];                    beta_Y[i-1].assign(constMultiplier);                }                                double thisSeqLogli = 0;                for (int i = 0; i < dataSeq.length(); i++) {                    // compute the Mi matrix                    computeMi(featureGenerator,lambda,dataSeq,i,Mi_YY,Ri_Y);                    // find features that fire at this position..                    featureGenerator.startScanFeaturesAt(dataSeq, i);                                        if (i > 0) {                        //		    tmp_Y.assign(alpha_Y);                        //		    RobustMath.Mult(Mi_YY, tmp_Y, newAlpha_Y,1,0,true,edgeGen);                        Mi_YY.zMult(alpha_Y, newAlpha_Y,1,0,true);                        newAlpha_Y.assign(Ri_Y,multFunc);                     } else {                        newAlpha_Y.assign(Ri_Y);                         }                    while (featureGenerator.hasNext()) {                         Feature feature = featureGenerator.next();                        int f = feature.index();                                                int yp = feature.y();                        int yprev = feature.yprev();                        float val = feature.value();                        if ((dataSeq.y(i) == yp) && (((i-1 >= 0) && (yprev == dataSeq.y(i-1))) || (yprev < 0))) {                            grad[f] += val;                            thisSeqLogli += val*lambda[f];                        }                        if (yprev < 0) {                            ExpF[f] += newAlpha_Y.get(yp)*val*beta_Y[i].get(yp);                        } else {                            ExpF[f] += alpha_Y.get(yprev)*Ri_Y.get(yp)*Mi_YY.get(yprev,yp)*val*beta_Y[i].get(yp);                        }                    }                                        alpha_Y.assign(newAlpha_Y);                    // now scale the alpha-s to avoid overflow problems.                    constMultiplier.multiplicator = 1.0/scale[i];                    alpha_Y.assign(constMultiplier);                                        if (params.debugLvl > 2) {                        System.out.println("Alpha-i " + alpha_Y.toString());                        System.out.println("Ri " + Ri_Y.toString());                        System.out.println("Mi " + Mi_YY.toString());                        System.out.println("Beta-i " + beta_Y[i].toString());                    }                    //badVector(alpha_Y);                }                double Zx = alpha_Y.zSum();                //if (Zx == 0) {                //Zx = (Double.MIN_VALUE*100000000);                //}                thisSeqLogli -= log(Zx);                // correct for the fact that alpha-s were scaled.                for (int i = 0; i < dataSeq.length(); i++) {                    thisSeqLogli -= log(scale[i]);                }                if (thisSeqLogli > 0) {                    System.out.println("This is shady: something is wrong Pr(y|x) > 1!");                }                logli += thisSeqLogli;                // update grad.                for (int f = 0; f < grad.length; f++)                    grad[f] -= ExpF[f]/Zx;                                if (params.debugLvl > 1) {                    System.out.println("Sequence "  + thisSeqLogli + " " + logli);                }                            }

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -