📄 index.html
字号:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"><html xmlns="http://www.w3.org/TR/REC-html40"> <head> <title>Data Processing with Manifold Methods</title> <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1"> <link href="styles.css" rel="stylesheet" type="text/css"> </head> <body bgcolor="#ffffff" lang="EN"> <div> <h1>Data Processing Using<br> Manifold Methods</h1> </div> <table width="400" border="1" cellspacing="0" cellpadding="0" align="center" bordercolor="#000000"> <tr align="center"> <td><img src="images/logo-manifold-small.jpg" width="600" height="378"></td> </tr> </table> <blockquote> <blockquote> <blockquote> <blockquote> <div align="justify"> <p align="justify">This course is an introduction to the computational theory of manifolds. Manifold models arise in various area of mathematics, image processing, data mining or computer science. Surfaces of arbitrary dimension can be used to model non-linear datasets that one encounters in modern data processing. Numerical methods allow to exploit this geometric non-linear prior in order to extract relevant information from the data. These methods include in particular local differential computations (related to the Laplacian operator and its variants) and global distance methods (related to geodesic computations). In this course, you will learn how to perform differential and geodesic computations on images, volumes, surfaces and high dimensional graphs.</p> <p align="justify"> The course includes a set of Matlab experiments. These experiments give an overview of various tasks in computer vision, image processing, learning theory and mesh processing. This includes computation of shortest paths, Voronoi segmentations, geodesic Delaunay triangulations, surface flattening, dimensionality reduction and mesh processing. </p> <p align="justify">One should copy/paste the provided code into a file named e.g. <font face="Courier New, Courier, mono">tp.m</font>, and launch the script directly from Matlab command line > <font face="Courier New, Courier, mono"> tp;</font>. Some of the scripts contain "holes" that you should try to fill on your own.</p> </div> </blockquote> <blockquote> <div align="justify"></div> </blockquote></blockquote></blockquote></blockquote> <table width="70%" border="0" cellspacing="5" cellpadding="1" align="center"> <tr> <td>0 - Basic Matlab instructions.</td> <td><div align="center"><a href="tp0.html">Matlab</a></div></td> <td><div align="center"></div></td> <td><div align="center"></div></td> </tr> <tr> <td>1 - Active contour and level sets.</td> <td><div align="center"><a href="tp1.html">Matlab</a></div></td> <td><div align="center">PDF</div></td> <td><div align="center">PPT</div></td> </tr> <tr> <td>2 - Front propagation in 2D and 3D.</td> <td><div align="center"><a href="tp2.html">Matlab</a></div></td> <td><div align="center"><a href="notes/cours-manifold-1.pdf">PDF</a></div></td> <td><div align="center"><a href="notes/cours-manifold-1.ppt">PPT</a></div></td> </tr> <tr> <td>3 - Geodesic computation on 3D meshes.</td> <td><div align="center"><a href="tp3.html">Matlab</a></div></td> <td><div align="center"><a href="notes/cours-manifold-2.pdf">PDF</a></div></td> <td><div align="center"><a href="notes/cours-manifold-2.ppt">PPT</a></div></td> </tr> <tr> <td>4 - Differential Calculus on 3D meshes.</td> <td><div align="center"><a href="tp4.html">Matlab</a></div></td> <td><div align="center"><a href="notes/cours-manifold-3.pdf">PDF</a></div></td> <td><div align="center"><a href="notes/cours-manifold-3.ppt">PPT</a></div></td> </tr> <tr> <td>5 - High Dimensional Data Processing.</td> <td><div align="center"><a href="tp5.html">Matlab</a></div></td> <td><div align="center"><a href="notes/cours-manifold-4.pdf">PDF</a></div></td> <td><div align="center"><a href="notes/cours-manifold-4.ppt">PPT</a></div></td> </tr></table> <br> <br> <br><p> Copyright
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -