📄 demossl.html
字号:
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<title>GraphDemo</title>
<meta content="Evrsoft First Page" name="GENERATOR">
</head>
<body>
<table style="WIDTH: 100%; HEIGHT: 20%" align="center" bgcolor="#00FFFF">
<tbody>
<tr>
<td width="10%"><img height="150" src="GraphPicture.png" width="190" border="0"></td>
<td width="5%"></td>
<td width="80%">
<p align="left"><font face="Verdana" size="6">DemoSSL</font></p>
<p align="left"><font face="Verdana" size="4">a Matlab GUI to explore semi-supervised learning and the influence of different similarity graphs</font></p>
<p align="left"> </p>
<p align="left"><font face="Verdana">by <a href="http://www.ml.uni-saarland.de/index.html">Matthias Hein</a> and <a href="http://www.kyb.mpg.de/~ule">Ulrike von Luxburg</a></font></p>
</td>
</tr>
</tbody>
</table>
<p align="center"><a href="GraphDemo.html"><font face="Arial" size="5">[ Go to GraphDemo main page]</font></a></p>
<h3><font face="Verdana">Purpose</font></h3>
<blockquote dir="ltr" style="MARGIN-RIGHT: 0px">
<p><font face="Verdana">DemoSSL: The purpose of this demo is to show how graph-based semi-supervised learning depends on the graph structure, the amount of labeled data and the regularization
parameter. As algorithm we use the one proposed by <a href="http://www.kyb.mpg.de/publications/pdfs/pdf2333.pdf">Zhou et al: "Learning with local and global consistency"</a>.<br></font></p>
</blockquote>
<h3><font face="Verdana">Tutorial</font></h3>
<blockquote dir="ltr" style="MARGIN-RIGHT: 0px">
<p><font face="Verdana">DemoSSL has been used for teaching purposes at the Machine Learning Summer School 2007 in Tuebingen, Germany. The tutorial presents the theoretical basis of the algorithm
of Zhou as well as of related ones. The influences of the different parameters on the classification results of the semisupervised learning algorithm are discussed, too.</font><br></p>
</blockquote>
<p align="center"><a href="HeinLuxburg_SlidesSemisupervisedLearning.pdf"><font face="Verdana" size="5">Download tutorial on semi-supervised learning</font></a></p>
<p> </p>
<h3><font face="Verdana">Screenshot of DemoSimilarityGraphs</font></h3>
<p align="center"><img style="WIDTH: 52.26%; HEIGHT: 52.26%" height="948" src="fig_DemoSSL.png" width="100%" border="0"></p><br>
<br>
<h3><font face="Verdana">Panels in DemoSSL</font></h3>
<div style="margin-left: 2em">
<ul>
<li><font face="Verdana"><strong><em>Plots:</em></strong> From left to right, the labeled and unlabeled points, the associated neighborhood graph and the result of the semi-supervise learning
algorithm.</font></li>
<li><font face="Verdana"><strong><em>Data Generator (Left):</em></strong> One can choose to draw data from a new dataset as well as a new sample from the same dataset. The latter is useful if
one wants to study the influence of the statistical fluctuations on the semi-supervised learning algorithm.</font></li>
<li><font face="Verdana"><strong><em>Graph Properties (Middle):</em></strong> The neighborhood graph and its parameter (the number of neighbors k or the neighborhood radius eps) can be choosen
as well as the parameter sigma (kernel width) of the Gaussian weights.</font></li>
<li><font face="Verdana"><strong><em>Graph Statistics (Middle/Bottom):</em></strong> The number of edges as well as the weights of the edges within/between the different classes are shown.
Additionally, the number of the connected components of the graph is presented.</font></li>
<li><font face="Verdana"><strong><em>SSL Parameters (Middle/Right):</em></strong> The control for the regularization parameter of the graph.</font></li>
<li><font face="Verdana"><strong><em>SSL Classification results (Middle/Right):</em></strong> The percentage of training and test (on the unlabeled data) error are shown. Additionally, also
the percentage of unlabeled points is reported. Points which are unlabeled are also counted as errors. However, unlabeled points should be rather seen as a third class which indicates that the
algorithm has not enough information to infer their labels.</font></li>
</ul>
</div>
</body>
</html>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -