📄 relaxation_ssm.m
字号:
function [test_targets, a] = Relaxation_SSM(train_patterns, train_targets, test_patterns, params)
% Classify using the single-sample relaxation with margin algorithm
% Inputs:
% train_patterns - Train patterns
% train_targets - Train targets
% test_patterns - Test patterns
% param - [Max iter, Margin, Convergence rate]
%
% Outputs
% test_targets - Predicted targets
% a - Classifier weights
%
% NOTE: Works for only two classes.
[c, n] = size(train_patterns);
[Max_iter, b, eta] = process_params(params);
y = [train_patterns ; ones(1,n)];
train_zero = find(train_targets == 0);
%Preprocessing
processed_patterns = y;
processed_patterns(:,train_zero) = -processed_patterns(:,train_zero);
%Initial weights
a = sum(processed_patterns')';
iter = 0;
k = 0;
while ((sum(a'*processed_patterns < b)>0) & (iter < Max_iter))
iter = iter + 1;
%k <- (k+1) mod n
k = mod(k+1,n);
if (k == 0),
k = n;
end
if (a'*processed_patterns(:,k) <= b),
% a <- a + eta*sum((b-w'*Yk)/||Yk||*Yk)
grad = (b-a'*y(:,k))./sum(y(:,k).^2);
update = grad.*y(:,k);
a = a + eta * update;
end
end
if (iter == Max_iter),
disp(['Maximum iteration (' num2str(Max_iter) ') reached']);
end
%Classify test patterns
test_targets = a'*[test_patterns; ones(1, size(test_patterns,2))] > 0;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -