📄 locboostfunctions.m
字号:
function [f, Df] = LocBoostFunctions(params, type, patterns, targets, h, params2)
%Return a value for the LocBoost algorithm functions
[c,r] = size(params);
r2 = r/2;
Nf = size(patterns,2);
switch type
case 'class_kernel'
w = 1./(1 + exp(-params* patterns));
f = (w.^((1+targets)/2) .* ((1-w).^((1-targets)/2)));
case 'Q1'
f = LocBoostFunctions(params, 'class_kernel', patterns, targets);
f = -sum(h.*log(eps + f));
%f = -sum(h.*((1+targets)/2.*log(eps+(1./(1 + exp((-params* patterns))))) + ...
% (1-targets)/2.*log(eps+1-(1./(1 + exp((-params* patterns)))))));
case 'gamma_kernel'
%f = (1./(1 + exp(params(1:r2) * patterns)));
mu = params(1:params2)';
invsigma = sqrtm(reshape(params(1+params2:end), params2, params2));
patterns = patterns - mu*ones(1,Nf);
if (Nf < 50)
f = diag(patterns'*invsigma*patterns)';
else
f = zeros(1,Nf);
for i = 1:Nf,
f(i) = patterns(:,i)'*invsigma*patterns(:,i);
end
end
f = exp(-0.5*f);
%f = f < 1;
%f = exp(-0.5*sum((params(1:r2)'*ones(1,Nf)-patterns).^2.*(params(r2+[1:r2])'*ones(1,Nf))));
case 'Q2'
%f = -sum(h.*(log(eps+(1./(1 + exp((params(1:r2) * patterns))))) + ...
% (1-h).*log(eps+1-(1./(1 + exp((params(1:r2)* patterns)))))));
%f = -sum(h.*log(eps+exp(-0.5*sum((params(1:r2)'*ones(1,Nf)-patterns).^2.*(params(r2+[1:r2])'*ones(1,Nf))))) + ...
% (1-h).*log(eps+1-exp(-0.5*sum((params(1:r2)'*ones(1,Nf)-patterns).^2.*(params(r2+[1:r2])'*ones(1,Nf))))));
f = LocBoostFunctions(params, 'gamma_kernel', patterns, [], [], params2);
f = -sum(h.*log(eps+f) + (1-h).*log(eps+1-f));
case 'NewTestSet'
%This section is used for labeling new data (especially of dimension > 2)
%In this case, params is phi and params2 is theta
phi = params;
theta = params2;
[Dims, Nf] = size(patterns);
targets = ones(1,Nf);
patterns(Dims+1,:) = ones(1,length(targets));
Pdecision = 0.5 * ones(1,Nf);
%Pdecision = LocBoostFunctions(theta(1,:), 'class_kernel', patterns, targets);
for t = 2:size(params,1),
Dgamma = real(LocBoostFunctions(phi(t,:), 'gamma_kernel', patterns(1:Dims,:),[],[],Dims));
Dclass = LocBoostFunctions(theta(t,:), 'class_kernel', patterns, targets);
Pdecision = (1-Dgamma).*Pdecision + Dgamma.*Dclass;
end
f = Pdecision;
otherwise
error ('Function type not recognized');
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -