📄 deterministic_annealing.m
字号:
function [patterns, targets] = deterministic_annealing(train_patterns, train_targets, params, plot_on)
%Reduce the number of data points using the deterministic annealing algorithm
%Inputs:
% train_patterns - Input patterns
% train_targets - Input targets
% params - [Number of output data points, Cooling rate]
% plot_on - Plot stages of the algorithm
%
%Outputs
% patterns - New patterns
% targets - New targets
if (nargin < 4),
plot_on = 0;
end
%Parameters:
[Nmu, epsi] = process_params(params);
T = max(eig(cov(train_patterns',1)'))/2; %Initial temperature
Tmin = 0.01; %Stopping temperature
[d,L] = size(train_patterns);
Ncent = 1;
label = zeros(1,L);
dist = zeros(Ncent,L);
iter = 0;
max_change = 1e-3;
%Initialize the mu's
mu = mean(train_patterns')';
while (T > Tmin),
iter = iter + 1;
%Find the distances from mu's to patterns
for i = 1:Ncent,
dist(i,:) = sum((train_patterns - mu(:,i)*ones(1,L)).^2);
end
dist = exp(-dist/T);
%Compute Gibbs distribution
P = dist ./ (ones(Ncent,1) * sum(dist));
%Recompute the mu's
old_mu = mu;
for i = 1:Ncent,
mu(:,i) = sum(((ones(d,1)*P(i,:)).*train_patterns)')'./(sum(P(i,:)));
end
if (sum(sum(abs(old_mu-mu))) <= max_change)
%Minimum reached, so decrease temperature ...
T = epsi * T;
if (Ncent >= Nmu),
%There are enough partitions
break
end
%...and add a center near the center that has the most variance
if (Ncent > 1),
for i = 1:Ncent,
dist(i,:) = sum((train_patterns - mu(:,i)*ones(1,L)).^2);
end
[m,label] = min(dist);
%Find the variance of the patterns around all the centers
Smu = zeros(1,Nmu);
for i = 1:Ncent,
Smu(i) = sum(std(train_patterns(:,find(label == i))'));
end
[m, max_std] = max(Smu);
else
max_std = 1;
end
Ncent = Ncent + 1;
mu(:,Ncent) = mu(:,max_std) + randn(d,1).*std(mu')'/10;
mu(:,max_std) = mu(:,max_std) + randn(d,1).*std(mu')'/10;
%mu(:,Ncent) = randn(2,1);
end
%Plot centers during training
plot_process(mu, plot_on)
end
%Label the data
dist = zeros(Ncent,L);
for i = 1:Ncent,
dist(i,:) = sum((train_patterns - mu(:,i)*ones(1,L)).^2);
end
[m,label] = min(dist);
%Label the points
[m,label] = min(dist);
targets = zeros(1,Ncent);
Uc = unique(train_targets);
for i = 1:Ncent,
N = hist(train_targets(:,find(label == i)), Uc);
[m, max_l] = max(N);
targets(i) = Uc(max_l);
end
patterns = mu;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -