📄 deterministic_sa.m
字号:
function [patterns, targets] = Deterministic_SA(train_patterns, train_targets, params, plot_on)
%Reduce the number of data points using the deterministic simulated annealing algorithm
%Inputs:
% train_patterns - Input patterns
% train_targets - Input targets
% params - [Number of output data points, cooling rate (Between 0 and 1)]
% plot_on - Plot stages of the algorithm
%
%Outputs
% patterns - New patterns
% targets - New targets
if (nargin < 4),
plot_on = 0;
end
%Parameters:
[Nmu, epsi] = process_params(params);
T = max(eig(cov(train_patterns',1)'))/2; %Initial temperature
Tmin = T/500; %Stopping temperature
[d,L] = size(train_patterns);
label = zeros(1,L);
dist = zeros(Nmu,L);
iter = 0;
max_change = 1e-3;
%Init the inclusion matrix
inclusion_mat = rand(Nmu, L);
inclusion_mat = inclusion_mat ./ (ones(Nmu,1)*sum(inclusion_mat));
if (Nmu == 1),
%Initialize the mu's
mu = mean(train_patterns')';
else
%Initialize the P
P = rand(Nmu,L);
P = P ./ (ones(Nmu,1)*sum(P));
while (T > Tmin),
iter = iter + 1;
T = epsi * T;
for i = 1:L,
%For each node (example):
%Recompute the mu's
for i = 1:Nmu,
mu(:,i) = sum(((ones(d,1)*P(i,:)).*train_patterns)')'./(sum(P(i,:)));
end
%Find the distances from mu's to patterns
for i = 1:Nmu,
dist(i,:) = sum((train_patterns - mu(:,i)*ones(1,L)).^2);
end
dist = exp(-dist/T);
%In this implementation, s_i is equal to dist!
%Compute Gibbs distribution
P = dist ./ (ones(Nmu,1) * sum(dist));
if (~isfinite(sum(sum(P))))
disp('P is infinite. Stopping.')
break
end
end
%Plot centers during training
plot_process(mu, plot_on)
end
end
%Label the data
dist = zeros(Nmu,L);
for i = 1:Nmu,
dist(i,:) = sum((train_patterns - mu(:,i)*ones(1,L)).^2);
end
%Label the points
[m,label] = min(dist);
targets = zeros(1,Nmu);
Uc = unique(train_targets);
for i = 1:Nmu,
N = hist(train_targets(:,find(label == i)), Uc);
[m, max_l] = max(N);
targets(i) = Uc(max_l);
end
patterns = mu;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -