📄 balanced_winnow.m
字号:
function [test_targets, a_plus, a_minus] = Balanced_Winnow(train_patterns, train_targets, test_patterns, params)
% Classify using the balanced Winnow algorithm
% Inputs:
% training_patterns - Train patterns
% training_targets - Train targets
% test_patterns - Test patterns
% params - [Num iter, Alpha, Convergence rate]
%
% Outputs
% test_targets - Predicted targets
% a_plus - The positive weight vector
% a_minus - The negative weight vector
[c, r] = size(train_patterns);
[Max_iter, alpha, eta] = process_params(params);
y = [train_patterns ; ones(1,r)];
z = train_targets;
%Initial weights
a_plus = sum(y')';
a_minus = -sum(y')';
iter = 0;
while (iter < Max_iter)
iter = iter + 1;
for k = 1:r,
if (sign(a_plus'*y(:,k) - a_minus'*y(:,k)) ~= sign(z(k)-.5)),
if (z(k) == 1),
a_plus = alpha.^y(:,k).*a_plus;
a_minus = alpha.^-y(:,k).*a_minus;
else
a_plus = alpha.^-y(:,k).*a_plus;
a_minus = alpha.^y(:,k).*a_minus;
end
end
end
end
a = (a_plus + a_minus)/2;
%Classify the test patterns
test_targets = a' * [test_patterns; ones(1,size(test_patterns,2))];
if (length(unique(train_targets))== 2)
test_targets = test_targets < 0.5;
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -