📄 local_polynomial.m
字号:
function test_targets = Local_Polynomial(train_patterns, train_targets, test_patterns, Nlp)
% Classify using the local polynomial fitting
% Inputs:
% train_patterns - Train patterns
% train_targets - Train targets
% test_patterns - Test patterns
% Nlp - Number of test points
%
% Outputs
% test_targets - Predicted targets
[M,L] = size(train_patterns);
N = size(test_patterns,2);
%Choose h
Ntest = Nlp;
Ntrain = L - Ntest;
[train_indices, test_indices] = make_a_draw(Ntest, L);
h = 0;
for i = 1:Ntest,
dist = sum((train_patterns(:,train_indices) - train_patterns(:,test_indices(i))*ones(1,Ntrain)).^2);
dist = sort(dist);
new_h = dist(round(Ntrain/10))/2;
if (new_h > h),
h = new_h;
end
end
%Classify all the test points to one of the Ntest points
Dn = zeros(1, N);
for i = 1:N,
dist = sum((test_patterns(:,i) * ones(1,Ntest) - train_patterns(:,test_indices)).^2);
[m, Dn(i)] = min(dist);
end
%Now, built the plug-in classifier for each test point, and classify all the
%points near it according to this classifier
test_targets = zeros(1, N);
for i = 1:Ntest,
point = train_patterns(:,test_indices(i));
target_point = train_targets(:,test_indices(i));
theta = fminunc('loglikelihood',zeros(M+1,1),optimset('Display','off'),train_patterns(:,train_indices),h,point,target_point);
indices = find(Dn == i);
X = train_patterns(:,test_indices(i))*ones(1,length(indices))- test_patterns(:,indices);
f_theta = 1./(1+exp(-theta(1:end-1)'*X-theta(end)));
test_targets(indices) = f_theta;
end
if (length(unique(train_targets)) == 2)
test_targets = test_targets > 0.5;
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -