📄 newton_descent.m
字号:
function Min = Newton_descent(a, theta, fun)
% Minimize a function using the Newton descent algorithm
%
% Inputs:
% a - Initial search point
% theta - Convergence criterion
% fun - The function to minimize
%
% Outputs:
% Min - The minimum point
gradJ = 1e3;
step_size = 1e-2;
D = length(a);
while (gradJ > theta),
%Compute the gradient of J in each direction, as well as the Hessian matrix
gradJi = zeros(1,D);
H = zeros(D,D);
for i = 1:D,
delta = zeros(size(a));
delta(i) = step_size;
y_minus = feval(fun, a - delta);
y_plus = feval(fun, a + delta);
gradJi(i) = (y_plus - y_minus)/(2*step_size);
end
for i = 1:D,
for j = i:D,
deltai = zeros(size(a));
deltai(i) = step_size;
deltaj = zeros(size(a));
deltaj(j) = step_size;
H(i,j) = (feval(fun, a+deltai+deltaj) - feval(fun, a+deltai-deltaj) - ...
feval(fun, a-deltai+deltaj) + feval(fun, a-deltai-deltaj))/(4*step_size^2);
H(i,j) = H(j,i);
end
end
update = inv(H)*gradJi';
if isnan(sum(update)),
break
else
%a <- a - inv(H)*gradJ
a = a - (inv(H)*gradJi')';
gradJ = sum(abs(update));
end
disp(num2str(a))
end
Min = a;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -