📄 relaxation_bm.m
字号:
function [test_targets, a] = Relaxation_BM(train_patterns, train_targets, test_patterns, params)
% Classify using the batch relaxation with margin algorithm
% Inputs:
% train_patterns - Train patterns
% train_targets - Train targets
% test_patterns - Test patterns
% param - [Max iter, Margin, Convergence rate]
%
% Outputs
% test_targets - Predicted targets
% a - Classifier weights
%
% NOTE: Works for only two classes.
[c, n] = size(train_patterns);
[Max_iter, b, eta] = process_params(params);
y = [train_patterns ; ones(1,n)];
train_zero = find(train_targets == 0);
%Preprocessing
processed_patterns = y;
processed_patterns(:,train_zero) = -processed_patterns(:,train_zero);
%Initial weights
a = sum(processed_patterns')';
iter = 0;
Yk = [1];
while (~isempty(Yk) & (iter < Max_iter))
iter = iter + 1;
%If a'y_j <= b then append y_j to Yk
Yk = [];
for k = 1:n,
if (a'*processed_patterns(:,k) <= b),
Yk = [Yk k];
end
end
if isempty(Yk),
break
end
% a <- a + eta*sum((b-w'*Yk)/||Yk||*Yk)
grad = (b-a'*y(:,Yk))./sum(y(:,Yk).^2);
update = sum(((ones(c+1,1)*grad).*y(:,Yk))')';
a = a + eta * update;
end
if (iter == Max_iter),
disp(['Maximum iteration (' num2str(Max_iter) ') reached']);
end
%Classify test patterns
test_targets = a'*[test_patterns; ones(1, size(test_patterns,2))] > 0;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -